£

Yadlfrmy
=0
a2 2 ik o ;
J..y.“ " E A \..Hn_
T - ﬁ.a ..'u n., ey
~t o) ﬂ JISPY ¥od
ke i (B

e, e Ry Ry
b =1 ot) LT
T BN

T

|
na I
: !‘

(e s
(wn]
-
=

RO

-4

T]

HOREN RRMTE 1Sl

I
1
A

s

SET TATT - oo
W AT BRETE T B

Y

ok ﬂl._“/ af "D
g IR =R1T Bl

ThinkCyber | NX Malware Analysis

Table of Contents

Basic Static MalWare ANAIYSISuviie ettt e e et e e e e tte e e e et e e e e e bt e e e e ebraeeeearaeeeaanes 6
Fundamentals Of STatic ANAlYSiS......uiiiiiiiiiiiiiieiciee et e ree e e s e e e s sabe e e s e abee e s enareeas 6
Basic File Properties and SINAtUIESc.uuiiiiciiiiiiiiie ettt e e s e s saae e e s sbae e s snsaeeeens 9
String Analysis and Pattern MatChingc.ueeeiciiiii i et baee e e 12
Reverse Engineering Tools and TECANIQUES........cuiiiiiiiiie et e e 15
(W nd PO Yo Te 2= =3 o Ve [T T o (PRSP 15
Portable Executable (PE) FOrMAt.......ccviiiieiciieciee e eete e stesetee et e e tee e seee e s aee e s aaeeseaeenaeesrneenes 17
DLL FileS iN WINGOWS......ceeitieiiiieiiee ettt st ettt stee ettt e st e s bee e st e sbee e sateesabeeesabeesaseeesnseesanenenanes 21
HEX EITOIS (HXD) wevvveeiiiiiiieiiitieeee ettt ettt e e e e et e e e e e e eeeaabbaeeeeeeeseesabaareeseeesannssreeeeeeas 24
PE Analysis Tools (PEID, CFF EXPIOrer, PEVIEW)c.uuiiiiiiieee ettt e e e e 27
WiNAOWS COMMON PrOCESSES ...eeeureerurieiiieerieeeniteesteesteeesuteesbeessseeesaseesssseesaseesseeesaseesnseessseeesasesanns 31
VDS BXE .ttt ettt ettt ettt e a e s bt e st e e st e e e bt e e s bt e e bt e e e abe e s ba e e sabeesbeeebeeesbeeenn 31
[0 Lo T =Y o= (PSP 33
RUNGIIB 2. EXE ettt ettt h e st st sttt e b e s bt e s bt e sbeeeat e e s e e beesbeesbeesaeenas 35
LYol 4T o] =) (P U TP P PSRRI 36
REESVIB2.EXE ...t n e n s na s nnnnnnnnnannnen 37
DINOSE.BXE. ..ttt eueteeeitee ettt et ettt ettt e sttt ettt e st e bt e e s bt e ettt e st e e e bt e e e be e e bt e e aabe e s beeesabeesabeeeanbeeebeeenars 38
CONNOSE.EXE...c ettt ettt b et sttt ettt e e bt e s bt e sat e et e bt e be e be e beeeaeeeaeeearean 39
COIEUTIL EXE ettt h ettt e b e e h e she e st e et e bt e b e e beenbeesaeesaeeeatean 40
(O] (= (= OO OTOTOP P OTPR P 41
LT] Lo} <o T T = (PSPPIt 42
YT RV TeT == (= TP P PR TPOPRRPPR 43
LIRSz T = < PP 44
LAY Aol g oL = (PN 45
WWURUCTELEXE .ttt sttt et e sb e s b st et et e e bt e sreesmeesanesaneeneennes 46
IVISIM D E NI X .ttt annnnnnnnnen 46
VSSAUMIIN.EXE...ccuteetieriie ittt ettt st st et e b e s ae e s et st e bt e bt e b e sb et st e et e et e e sreesnee e 48

K] £ T OO P PSPPSR OPRPRONE 48
Y1 g i = (PP PSP PP 49

) R =] o o B PP PPPPPPPPPPPIRE 50
Basic DyNamic MalWare ANIYSISciccuiieiiiieie ittt et e e e st e e e rar e e e esaar e e e esataeeesnbaeeeesanreeaens 51
Introduction to Dynamic Malware ANAlYSiSuueeeieiiiecciiieieee e e e e e e s e e nrraee e e e e e 51
Y= e o Yo DN F= 1 Y] U UEPRN 53
ANAlYZiNg ProCeSsS BENAVIO ... ettt e e e e e e e st e e e e e e e e e nbrareeeeeeeeeannnrnes 55
Process MONITONuuiiiiiiiiiiiiiii it 55

ThinkCyber | NX Malware Analysis

o Tol ST T4 o] (oY =] oSSR SP 60
Running Malware Samples in @ SANADOXc..uviiiiiiiiiiiieeccce e e 65
SYSTEM-LEVEI CRaNEES viiiiiiiiee ettt et e et e e st e e e e satee e e ssbeeeesstaeaesansaeeesansreeenan 66
(20T =4] oo | A RSP SPR 67
AUTOTUNS. .ttt ettt s s b b e s s b e e e s s a e e s s b e e e s s bbb e e e snbae e e snrae e e e 70
PFOCDOT ..ottt ra s 74
Network Traffic Analysis for Malware ANalYsisceoeciiiiiiiiiie e e e 78
Understanding Network TraffiC.......ooicieri i e 78
WWIEESIAIK ..t et e s bt e e bt e e st e e sbe e e sab e e sabeesbeeesareeenne 79
IO 24 B 8T o o TSRS 91
INEEWOTKIVIINE ...ttt ettt b e st st sttt b e s bt e s be e sbeesateeaseenbeesbeesbeesneenas 93
SSL/TLS Traffic Decryption and INSPECHONccueiiieeieicie e e erteeste e s e eeeaeebeebeebeesaaesabesabeeabeenreas 95
[aTageYe [V TeinfoYa IR de T3] 1Y A I TR 95
SSL/TLS HaNASNAKE PIrOCESScvveeivieiteeeeteeeetee et e eeteeeetteeeteeeeteeeetesesaeeeesteesbesessseesnseseseeessesenes 96
Understanding SSL/TLS Encryption AIZOrthmS.........coocviiiiiieiieecee et e 96
SSL/TLS Decryption With WiIreShark........ccc.eeeoiiiiiee ettt ettt et et e e 98
SSL/TLS Decryption With SSLSPHTcccviiiiiiiieeie et estte ettt ettt te e te e b e ebeesteestaesanesaneens 101
SSL/TLS Decryption for Incident Response and FOreNSICS........ccvuveivveeereeeeeeeeireeeeeeeeveeesseeesneeas 107
Memory Analysis for MalWare ANalYSiS......c.ueiiiciiiie e see e et e e e e srbee e e e abe e e e e areeas 108
Overview of MemOry ANAIYSISoccuiiieeee et e et e e e aree e e e abae e e enbeeeeeeareeas 108
Memory ACQUISITION TECHNIQUES......cccuieee ittt e et e e e et e e e e ebte e e e eateeeeebteeeeebreeaeeanes 109
AV o] =1 n 111 42 PSP 110
LY] = a1 11 1Y T PRSI 111
LYo a1 [a2 TS 120
Understanding MemOry FOMENSICSuuuiiiiiiiiciiiiireeee e e e eccttrree e e e e e eccrateeeeeeeesssnbaaaeeeeessessnnresnneseeeanns 132
Basics of Malware and Its IMmpact 0N MEMOIYcoiiiiiiiiiiiieee e sarae e 133
Detecting Malware through Memory ANalysisccocciiiiiiciiee e 134
Interpreting Memory Artifacts in Malware Analysis........coccieeiieciiiiiciiiee e 135
INEFUSION DETECHION ettt e e e st e e s e e e s e e e e s e mre e e s e mneees 136
Command and Control (C2) Infrastructure ANAlYSiscccueeeeeiieeeeeiieee e e e 138
Common Patterns of Malicious Network TraffiCc.cceeveeiieiieiiinie e 139
Deep Packet Inspection for Malware ANAlySiscoccvieeiiiiiieiciieee e et svree e 139
Signature-based vs Anomaly-based Detectioneeeeveiii i 140
Evasion Techniques used by Malware in Network Trafficcccooveeeciieiicciiee e 141
Network Forensics: Post-Malware Infection ANalysiscoeeeieciieieeciiie e 143
Proactive Defense Against Malware and APTScoiiciieeiiiiieeeciieee et e e eeitee e e ssite e e e sreeeeessnraeeseanes 143

ThinkCyber | NX Malware Analysis

Role of Darknet Traffic Analysis in Malware Detection.......cccceeeeciieeieciiee e 144
INtrOdUCTION 0 YARA ettt sttt e b e b e s bt e st e st e st e b e beesmeeemeesneeenneen 146
Use of Heuristics in Memory-based Malware Detectioncccoecciiieiieieec e 149
Advanced Static MalWare ANalYSiS........uiiiiiiiiiiiiieieiee et e e s sree e e ssrae e e s aeeessnaeeeean 151
Understanding the PE (Portable Executable) FileS......c.uuivuiiiiicciiee e 151
UNAErstanding PaCKEIS........uuviiiiiiiei ettt et e et e e e et e e e e e bte e e e ebteeeesntaeeesnteeeseanes 159
2 TT =1 P PTPPPPPTPPPPPPPRt 160
[F=4] o] BT 2= PP 160
Understanding Binary NUMDEIS.......cooiiiiiiiiiee ettt e e s see e s sree e e s sabe e e s snreeas 161
Converting Decimal t0 BiNAIYciicciiii ettt e e e e tte e e s etbe e e s ebeeeesebreeaeeanes 162
CoNVErtiNg TEXE 10 BiNary coeeeeee e e e e e e e e e e e e e 163
Practical Applications of Binary CONVEISIONcccuieiiiciieeeecitee e ecitee e ceeee e ssrae e svae e s e svee e e e naveeas 165
HEX CONVEISION <.ttt ettt ettt e ettt e e ettt e e s et e e s s bt e e e s sabeeeessabeeeeseaneeeeseaneeeesaneneesannen 166
Introduction to Hexadecimal NUMDErS..........cooiiiiiii e 166
ConVErting HEeX TO BiNArY oo e e e 167
Converting Between Decimal, Binary, and Hexadecimalc.ccooeciieeieciiee e 168
Real-world Use Cases of Hexadecimal CONVErSioNcoccueeeiieeeriieeniiieeniee et sieeesvee e 170
Disassembly and DecomMPilationcocciiiiieiee et 171
DDA et h ettt ettt b e bt e bt e eh et ea et et e e bt e bt e eh e e eate et e e bt e be e bt e eneeeneeeateenrean 181
INErOAUCTION TO IDA ...ttt st st s e b e e s bt e e ne e e sareesmenesareeeane 181
Malware ANalysis USING IDAcoiiiee ettt e e tee e e e ettt e e e e ebae e e eeatae e e eeabaeeeesabeeeeennsenas 185
SELHNG UP ThE IDA ... e e e e st e e e et e e e ssabaeeesstbeeesansbaeesnnssaeeans 191
FEATUIES OF IDA ...ttt ettt st et e et e e bt e s reesanesaneeareeneens 195
Keyboard ShortCULS iNIDAooo it ee e e et ee e e e et e e e e eatae e e e abae e e eeabeeaeennsenas 199
DebUZEING WIth IDAeoiie et e et e e e e et e e e et a e e e e ataeeeeeabaeeeeenbeeaeennseeas 200
Identifying Windows Malware CharacteristiCS......cuuiiiiiiiiiiiiiieeeciiiee et 202
THE STACK IN IDA. ..ottt sttt et e r e s bt e s e s r e s bt e bt e b e e nneesreesaeeennees 204
Advanced REVEISe ENGINEEITNGuuiiiiiieeeeiitee e ettt e esitee e ssre e e e streeeesabeeessabeeeessbaeeesnreeessssenas 205
Code Obfuscation and DEObfUSCAtIONc.eeiuiiiiiiiiiieeie ettt 218
Malware Classification and AttribULIONcoouiiiiiiii e 222
Advanced Dynamic Malware ANGIYSIScccuuiiiiiiiieeieiiie ettt estre e et e e e stae e e esaae e e s baeeeesanaeeeens 228
Advanced Behavioral ANGlYSis........cociiiiiiiieie ettt e e e e e sbre e e sbae e s e eabaee e e nareeas 229
Anti-Analysis Techniques and COUNtEIMEASUIEScccccccuviiiieeeeeeecciere e e e e ecearrree e e e e e esrnrraeeee s 229
Timeline and Correlation ANAlYSis...... ..o e e e e e e e e e eraraeeeee s 232
Malware Persistence MeChaniSMS......ccoiuiiiiieiiieertee ettt e e esreeesaneeeaee 233
(0111775 =SSP 236

ThinkCyber | NX Malware Analysis

([alageTe [N ot oY g IR do @11V 5] o - SRS 236
Dynamic Analysis WIth OllYDDE........ccoocuiiiiiiiee ettt e e e ree e e e e e e eareeas 241
Anti-Debugging and Anti-Analysis TEChNIQUES........ciiiiiiiiiiiiie et 243
Reverse Engineering and Code ANalYSiS.......ccuiiiiiiieeiiiiieei et esitee e sseee s sree e s svee e e sree e s s saveeas 246
Malware Debugging Tricks and TiPS....cccuiiiiiiieeeieiee ettt e e e rbee e e erae e e e b e e s eareeas 248
OllyDbg EXtensions @and PIUGINSoeiiiiiiieiciieie ettt et e e e stte e e s e rte e e s ebeeeesenaeeaeennes 250
Keyboard Shortcuts in OllYDDEoiiiiiiiii ettt sbee e s e e s 251
Script-based MalWare ANAIYSISiccuuiii it e e s s e e s s bee e e s sbaeeessneaeeesnes 252
Malicious DOCUMENT ANGIYSIS ..eouvrieiiiiiiee ittt e et e e e st e e s st e e e sbaeeeesbeeeessseeeeesseeeassnnes 253
Analyzing Malicious Microsoft Office and PDF DOCUMENTSccccvveeeeeuiieeeciiieeeccieeeeecvvee e 253
Extracting and Analyzing Embedded Scripts and Macroscccccccuveeeeciieeeccciiee e 254
Mitigating Document-Based Attacks and EXPIOItSccveeieeiieriieiiee e 255
Advanced Script ANalysis TECANIQUES ...ccccviiiiiiiiie et e e ebee e s e e e e e areeas 256
Identifying and Analyzing Script-Based Exploits and Shellcode..........cccovveeeeiiiiiiiiiireeeeecceenne 256
Automation of Script-Based Malware Analysis........ccoccueeeeiiieieiiiieee e 257

ThinkCyber | NX Malware Analysis

Basic Static Malware Analysis

Fundamentals of Static Analysis

Malware, short for malicious software, refers to any software specifically designed to infiltrate,
damage, or disrupt computer systems. The primary goal of malware is to compromise sensitive
information, disrupt operations, or gain unauthorized access.

Types of Malware

There are various types of malware, each with its own characteristics and objectives. The most
common types include:

= Viruses: Malicious programs that self-replicate by attaching themselves to other files or
programs.

= Worms: Standalone programs that spread across networks and exploit vulnerabilities.

= Trojans: Disguised as legitimate software, these programs create backdoors, allowing
unauthorized access.

= Ransomware: Encrypts the victim's data and demands payment for its release.

= Spyware: Covertly collects and transmits user data, such as keystrokes or browsing history, to
a remote server.

= Adware: Delivers unwanted ads and can redirect browser searches or track user activity.

Malware Analysis Techniques

Two primary techniques are used to analyze malware: static analysis and dynamic analysis. This
chapter will focus on static analysis, which examines the malware without executing it.

Static Analysis

Static analysis involves analyzing a malware sample's code, structure, and resources without running
the malicious program. This technique is useful for quickly gathering information about the malware,
such as its functionality and possible infection vectors. Some common static analysis methods include:

e Signature-Based Detection
This method involves comparing the characteristics or "signatures" of a malware sample
against a database of known malware signatures. If a match is found, the sample is flagged as
malicious. Signature-based detection is effective for identifying known malware but may
struggle with detecting new or modified variants.

e Heuristic Analysis
Heuristic analysis involves identifying potential threats or suspicious behavior based on
patterns, rules, and algorithms. It helps in detecting unknown or previously unseen malware
by analyzing code structures, file characteristics, or communication protocols.

o File Structure Analysis
This method focuses on examining the structure of a malware sample. It involves analyzing
the layout and organization of files within the malware, including header information,
sections, resources, and metadata. File structure analysis can provide insights into the
purpose, functionality, and potential infection vectors of the malware.

ThinkCyber | NX Malware Analysis

e Strings Analysis
This method involves extracting and analyzing strings (sequences of characters) present in a
malware sample. By examining these strings, analysts can uncover clues about the malware's
behavior, communication protocols, command-and-control servers, or encryption
mechanisms.

e Disassembly
Disassembly refers to the process of converting machine code (binary instructions) back into
assembly code, which is more human-readable. By disassembling a malware sample, analysts
can study the instructions and logic flow, enabling them to understand the functionality,
potential vulnerabilities, or anti-analysis techniques employed by the malware.

Hands-on Example
Strings analysis involves examining the human-readable text in a malware sample. This text can reveal

valuable information, such as URLs, IP addresses, or suspicious function names.

Exercise: Strings Analysis

1. Download a sample malware file (e.g., a known virus or a Trojan) from a reputable source,
such as the "TheZoo" or the "VirusShare" project. Ensure you are working in a secure and
isolated environment, such as a virtual machine.

theZoo/malware/Binaries at ma: X -

G i) & github.com,

¥ master ~ theZoo / malware / Binaries / Go to file
dOn0Ox Added NOBELIUM d8s819d on Apr3 YE) History
AllElectroRAT Revamp of malware folder + new samples 2 years ago
AndroRat_6Dec2013 Revamp of malware folder + new samples 2 years ago
Android.PegasusB Revamp of malware folder + new samples 2 years ago
Android.Skygofree Revamp of malware folder + new samples 2 years ago
Android.5py.49_iBanking_Feb2014 Revamp of malware folder + new samples 2 years ago
Android.VikingHorde Revamp of malware folder + new samples 2 years ago
AntiExeA Revamp of malware folder + new samples 2 years ago
Artemis Revamp of malware folder + new samples 2 years ago
-

2. Install the 'strings' utility, which is available on most Unix-based systems, or use a similar tool
on Windows, such as 'Strings' from Sysinternals Suite.

3. Run the 'strings' command on the malware sample:
strings sample_malware.bin > output.txt.

ThinkCyber | NX Malware Analysis

B Ch\Windows\System32icmd.exe — O %
72322 e

ownloa

This command will generate a text file containing all human-readable strings in the sample.

4. Analyze the 'output.txt' file for any suspicious or interesting strings, such as URLs, IP addresses,
or function names related to malicious activity.

BN C:\Windows\System32icmd.exe — O b4

Windows Command 'findstr'

findstr is a command-line utility in Windows, which is used for searching patterns of text string in files.
In the context of malware analysis, it is helpful to identify suspicious or known malicious strings in
binary files.

Basic Syntax:
findstr [options] [string] [file_name]

Key Options:
/R Use regular expressions to find strings.
/ Ignore case while searching.
/L Search for a literal string (default).
/N Show line numbers.
/S Searches in the current directory and all subdirectories.
/P Skip files with non-printable characters.
/M Print only the file name if a file contains a match.

Examples of findstr Usage in Malware Analysis:

1. Find a literal string in a file:

B Ch\Windows\System32icmd.exe — O %

lalware\Downloa eRed.Worm.C\PATC i T4 X findstr /

This command will search for the case-insensitive string "malware-string" in the file "malware-file.exe"
and display the file name if a match is found.

ThinkCyber | NX Malware Analysis

2. Use multiple strings to search in a file:

BE¥ C:\Windows\System32hcmd.exe — O %

alware\Download CodeRed . Worm.C\PAT(xe NT4Y 21.EX findstr /I "user http"

This command will search for the strings "user" or "http" in the file.

Note: findstr can handle text-based files effectively, but may have limitations with binary files. You may
need to use other tools or techniques for advanced malware string analysis.

For a complete list of options and more complex usage, consult the official documentation or use
findstr /? in the command prompt.

Basic File Properties and Signatures
Understanding basic file properties and signatures is essential for identifying and analyzing different
file formats and detecting malicious files.

Basic File Properties

Every file contains various properties that can provide valuable information about the file's content,
format, and origin. Some common properties include:

= File name and extension: The file's name and extension can give an initial clue about its format
and purpose.

= File size: The size of the file can help determine its complexity and the amount of data it
contains.

= Metadata: Some file types contain metadata, which can include information about the file's
creation date, modification date, and author.

= File attributes: File attributes, such as read-only or hidden, can provide insight into the file's
intended use.

File Signatures (Magic Numbers)
A file signature, also known as a magic number, is a unique sequence of bytes found at the beginning

of a file, which identifies its format. File signatures are essential for distinguishing file types and
detecting potentially malicious files.

ThinkCyber | NX Malware Analysis

Hands-on Example

Understanding basic file properties and signatures is crucial for working with various file formats and
detecting malicious files. To identify a file's signature, you can use a hex editor to examine the first few
bytes of the file. The following exercise will guide you through this process.

Exercise: Identifying File Signatures

1. Download a few different file types (e.g., a .jpg image, a .pdf document, and a .zip archive)
from a trusted source.

2. Install a hex editor, such as HxD for Windows or Hex Fiend for macOS.

3. Open each file in the hex editor and examine the first few bytes. Take note of the file
signatures (magic numbers).

S0 HxD - [C\Users\Malware\Downloads\W32.CodeRed Worm. C\PATCHY\WINK\ Q30097 ~1,EXE] — O *
S_gl File Edit Search View Analysis Tools Window Help -8 X
Bl | E @~ e || Windows (AMSI) | hex I
E_g] Q30057~1.EXE Special editors x
offsec(h) 00 01 02 03 04 05 06 07 05 09 OA OB OC OD OE OF Decoded text ~ | Data inspector
oooccooo [ERERY 48 00 01 00 00 00 04 OO 00 OO 44 0 b
00000010 B8 00 00 00 00 OO0 00 OO 40 OO 00 00
00000020 00 00 00 00 00 OO0 00 00 00 00 00 00 Binary (8 bit) 01001107 S
00000030 00 00 00 00 00 OO0 00 00 00 00 00 00 Int8 ota: T7
00000040 B8 01 4C CD 21 00 00 00 50 45 00 00 Ulnta o |77
00000050 A4 €8 01 37 00 00 00 00 00 00 00 00 geten o
00000060 0B 01 06 OZ 00 4E 00 00 00 06 00 00 Int16 gote: 23117
00000070 00 1C 00 00 00 10 00 00 00 &0 00 00 Uint16 gote: 23117 v
00000080 00 10 00 00 00 02 00 00 04 00 00 00 1msa ot loaclid
00000080 04 00 00 00 00 OO0 00 00 00 80 01 0O Byte order
000000A0 TC 09 04 00 02 00 00 00 00 00 10 00 @ Little endian O Big endien
000000BO 00 00 10 00 00 10 00 00 00 00 00 00
Q00Q000Co 00 OO0 00 00 00 OO0 00 00 D4 57 00 CO o [[JHexadecimal basis (for integral numbe
Offzet(h): 0 Block(h): 0-1 Length(h): 2 Owverwrite

4. Compare the file signatures with a list of known file signatures, such as the ones available
on the "File Signatures" website or Gary Kessler's "File Signatures Table."

File signatures, also known as magic numbers, are the first few bytes of a file that are used to identify
the file format or type. Here are the file signatures for some common executable file formats:

File Extension | File Signature (Hexadecimal) | ASCII
.EXE 4D 5A MZ
.DLL 4D 5A MZ
.SYS 4D 5A MZ
.SCR 4D 5A Mz

1. The file signatures for .EXE, .DLL, .SYS, and .SCR files are the same because these files are all
based on the Portable Executable (PE) format, which starts with the "MZ" signature. The "MZ"
refers to Mark Zbikowski, one of the original architects working on MS-DOS.

2. .COM, .BIN, .BAT, .PIF, .JS, VBS, .PS1 file types do not have a specific file signature as they can
vary widely based on the content of the file.

3. Thistable covers just the first few bytes (file signatures or magic numbers) of these file formats,
and many formats have additional structure further into the file. For example, PE files (.EXE,
.DLL, .SYS) have an additional "PE\O\0" signature starting at byte 0x80 (decimal 128).

10

ThinkCyber | NX Malware Analysis

4. File signatures are not a definitive way to identify a file type because they can be spoofed or
absent. Other methods, such as heuristic analysis, are often used in addition to file signatures
for file type identification.

Always remember to handle any unknown files, especially executables, with extreme care to avoid

potential malicious code execution.

Hands-on Example

A file signature scanner is a tool that can identify file types based on their signatures. In this exercise,
you will create a simple file signature scanner using Python.

Exercise: Creating a File Signature Scanner

1. Create a new Python script and name it 'file_signature_scanner.py'.

2. Define a dictionary of file signatures, with file extensions as keys and their corresponding
magic numbers as values. For example:

FILE_SIGNATURES = {
".jpg": b'\XxFF\xD8\xFF',
".png": b'\x89\x50\x4E\x47\xOD\Xx0A\x1A\x0A',
" gif": b'\x47\x49\x46\x38',

" pdf": b"\x25\x50\x44\x46',
".exe": b'\x4D\x5A",
".dll": b"\x4D\x5A'

3. Define a function that reads the first few bytes of a file and checks if they match any of the
known file signatures:

def scan_file_signature(file_path):
with open(file_path, 'rb') as file:
file_start = file.read(8) # Reads the first 8 bytes
for extension, signature in FILE_SIGNATURES.items():
if file_start.startswith(signature):
return extension
return None

file_path ="/path_to_file" # Replace with your file path
print(f"The file {file_path} seems to be of type: {scan_file_signature(file_path)}")

11

ThinkCyber | NX Malware Analysis

String Analysis and Pattern Matching
String analysis and pattern matching are essential techniques for analyzing text-based data in various
file formats and detecting suspicious content or malicious code.

String Analysis

String analysis involves examining human-readable text within a file or data stream to identify valuable
information, such as URLs, IP addresses, suspicious function names, or other indicators of malicious
activity. It can also be used to extract and analyze metadata from various file types.

Pattern Matching

Pattern matching is the process of identifying specific patterns within text data, such as email
addresses, URLs, or other structured data. Regular expressions (regex) are a powerful tool for pattern
matching, enabling the search for complex patterns within strings.

Hands-on Example
Exercise: Extracting URLs from a Text File

1. Create a new Bash script named 'url_extractor.sh'.

[] kalii@kali: ~

File Actions Edit View Help
GNU nano 7.2 url_extractor.sh

-z ||$1||

'Missing argument: url_extractor.sh $1°'

strings $1 -Eo '(httplhttps)://[" 1+’

[Read 8 lines |
WS Help i write oOut Where Is MY Cut Bij Execute W8 Location
By Exit M Read File Replace MWl Paste BB Justify Wi Go To Line

2. Use the Bash script to extract URL.

CJ kali@kali: ~
File Actions Edit View Help

bash url_extractor.sh Desktop/W32.CodeRed.Worm.C/PATCH/WINK/Q30097~1.EXE
https://www.verisign.com/rpa

http://ocsp.verisign.com/ocsp/status@
https://www.verisign.com/rpa0
http://crl.microsoft.com/msprod/windows/windowspca.crlo
http://ww.microsoft.comd

12

ThinkCyber | NX Malware Analysis

Hands-on Example

Exercise: Identifying Suspicious Strings in a Binary File
1. Download a binary file or use one from a previous exercise.
2. Create a new Python script named 'suspicious_strings.py'.

3. Define a function that reads the binary file and identifies suspicious strings using a list of
keywords:

import re

def scan_suspicious_strings(file_path):
with open(file_path, 'rb') as file:
file_content = file.read().decode()
suspicious_strings =[]

for keyword in SUSPICIOUS_KEYWORDS:
if re.search(rf"\b{keyword}\b", file_content, re.IGNORECASE):
suspicious_strings.append(keyword)
return suspicious_strings

file_path ="/path_to_file" # Replace with your file path
print(f"Suspicious strings in the file {file_path}: {scan_suspicious_strings(file_path)}")

4. Define a list of suspicious keywords and use the 'find_suspicious_strings' function to search
the binary file:

SUSPICIOUS_KEYWORDS = [
"password",
"secret",

llkeyll'
"admin",
Add more keywords as needed

Regex for Malware Analysis

Regex is a tool that can be used to analyze patterns and behaviors. All these expressions will not
necessarily apply to every situation, and some malware may avoid these patterns specifically to avoid
detection. Always use a combination of tools and techniques when analyzing malware.

Regex Basics

. Matches any character except newline
* Matches 0 or more repetitions of the preceding character

+ Matches 1 or more repetitions of the preceding character
? Matches 0 or 1 repetition of the preceding character
{n} Matches exactly n repetitions of the preceding character

{n,} Matches n or more repetitions of the preceding character
{{m} Matches up to m repetitions of the preceding character
{n,m} Matches at least n and at most m repetitions of the preceding character

13

ThinkCyber | NX

Malware Analysis

(1 Matches any single character in brackets

("] Matches any single character not in brackets
A Matches the beginning of line

S Matches the end of line

| Either or

() Group

Common Regex Patterns in Malware Analysis

IP Address:
Domain Names:
Email Addresses:
URLs:

Hex Strings:
Baseb64 Strings:

User-Agent Strings:

Registry Keys:

Suspicious API Calls:

File Path:

Flags

i Case insensitive
g: Global search
m: Multiline search

\b\d{1,30\.\d{1,3\.\d{1,3\.\d{1,3\b

([a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,}

[a-zA-Z0-9._ %+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}

http[s]?://(?:[a-zA-Z]| [0-9] | [S-_@.&+] | [1*\\(\\),] | (?:%[0-9a-fA-F][0-9a-fA-
F1))+

\\b[0-9A-Fa-f]+\\b

(?:[A-Za-z0-9+/1{4})*(?:[A-Za-20-9+/]{2}==| [A-Za-z0-9+/1{3}= | [A-Za-z0-
9+/){4})

Mozilla\/[0-9]\.[0-9] \(compatible; MSIE [0-9]\.[0-9]; Windows NT [0-9]\.[O-
9l;

(HKLM | HKCU | HKCR | HKU | HKEY_LOCAL_MACHINE |HKEY_CURRENT_USER|H
KEY_CLASSES_ROOT|HKEY_USERS)\\\\

VirtualAlloc|VirtualProtect | CreateRemoteThread | WriteProcessMemory | Re
adProcessMemory | CreateProcess

[@-zA-Z]A\([M\V:*2"<> [\\n) * [V *2"<> [\r\n]*

The above patterns are simplified and may not cover all cases. Also, the patterns themselves could be
obfuscated or encoded in real-world malware samples, so more complex analysis techniques would
be needed in those situations.

14

ThinkCyber | NX Malware Analysis

Reverse Engineering Tools and Techniques

Little and Big Endian
Understanding endianness, which refers to the order of bytes in a digital word, is crucial for accurate
malware analysis.

Big Endian

In Big Endian format, the most significant byte (the "big end") is stored in the smallest address, with
the least significant byte stored in the largest address. For example, a four-byte integer 0x12345678
would be stored as:

= 0x12 at address 0
= 0x34 ataddress 1
= 0x56 at address 2
= (0x78 at address 3

Little Endian

In contrast, the Little Endian format stores the least significant byte (the "little end") at the smallest
address and the most significant byte at the largest address. Using the same four-byte integer, it would
be stored as:

= (Ox78 at address 0
= 0x56 at address 1
= 0x34 at address 2
= 0x12 at address 3

Disassembly and Reverse Engineering

When disassembling and reverse engineering binary files, understanding the target system’s
endianness is essential to interpret data structures, function calls, and instruction sets correctly. For
instance, if a disassembler misinterprets the endianness of an instruction, it may disassemble the bytes
incorrectly, resulting in a completely different instruction set.

Network Traffic Analysis

In malware analysis, network traffic often needs to be analyzed. A malware sample communicating
with a Command and Control (C2) server might send data in Big Endian, also known as network byte
order. If an analyst misinterprets this data as Little Endian, the IP addresses or port numbers extracted
from the network packets could be incorrect.

x32 vs x64 in Malware Analysis

The endianness doesn’t inherently depend on whether the system is 32-bit (x32) or 64-bit (x64). Both

Little and Big Endian schemes can be used in either system. However, malware may target different
architectures, and the analyst must be aware of the endianness used in each case.

15

ThinkCyber | NX Malware Analysis

For instance, x86 and x86_64 CPUs (Intel and AMD CPUs) are both Little Endian. If we were to consider
a 4-byte memory address 0x12345678 on these systems, it would be stored in memory as 78 56 34 12.

In contrast, some architectures like MIPS, often found in IoT devices, can operate in both Little and Big
Endian modes.

Importance of Endianness in Malware Analysis

Understanding endianness is crucial for malware analysts to avoid misinterpreting data.
Misinterpretation may lead to incorrect conclusions, missed indicators of compromise, or failed exploit
attempts.

Cross-architecture Analysis

When analyzing malware designed for different architectures, it's essential to use emulators, virtual
machines, or sandbox environments that support the target architecture and endianness. Tools like
QEMU can emulate different CPU architectures and endianness, facilitating the analysis process.

By understanding the nuances of endianness and its implications in malware analysis, analysts can

improve their ability to dissect, reverse engineer, and develop countermeasures against malicious
software.

16

ThinkCyber | NX Malware Analysis

Portable Executable (PE) Format

Malware analysts frequently encounter a variety of file types when dissecting malware, and the
Portable Executable (PE) format is one of the most common. These files, which include .exe, .dll, .sys,
and others, form the backbone of the Windows operating system. As such, understanding the PE
structure is crucial for anyone involved in malware analysis or reverse engineering.

Structure of a PE file

A PE file structure is organized in a specific way. Each part of the file contains data used either by the
operating system loader or by the running program. Here is a detailed layout of a typical PE file:

e DOS Header: The DOS Header is located at the beginning of the PE file and contains
information required by the MS-DOS. The most important element here is the e_Ilfanew field,
which contains the offset to the PE header.

e PE Signature: This is the PE header's starting point, identified by the "PE\O\O" signature (hex:
50 45 00 00).

e COFF (Common Object File Format) Header: The Common Object File Format (COFF) header
contains basic information about the executable, such as its architecture (32-bit or 64-bit), the
size of the sections, and the time the executable was compiled. It also includes the entry point
of the program, which is crucial during malware analysis.

o PE Optional Header: Despite its name, this section is not optional for executable images. It
includes important data for the Windows OS loader, such as initial stack size, program entry
point, image base address, section alignment info, OS version, and more.

e Section Headers: Each section header describes a block of code or data in the executable,
specifying sizes, locations, and characteristics.

e Sections: These are blocks of code or data described by the section headers. Common sections
include .text (executable code), .data (global data), .rdata (read-only data), .bss (uninitialized
data), .idata (import and export data), .rsrc (resource data), and .reloc (relocation data).

PE files are often the vehicle of choice for malware on Windows. As such, understanding the various
sections of a PE file can aid malware analysts in identifying and analyzing malicious software.

1. Code Section (.text): This section usually contains the executable code. Malware analysts often
focus on this section to understand what the malware is designed to do.

2. Data Section (.data): This section contains initialized data, such as global variables. Malware
may store configuration data or decryption keys here.

3. Resource Section (.rsrc): This section contains resources used by the executable. Malware
often uses this section to store additional malicious payloads, configuration data, or even

decoy benign files.

4. Import Section (.idata): This section contains a list of DLLs and functions that the PE file
imports. Analysis of this section can reveal the functionality of the malware.

17

ThinkCyber | NX Malware Analysis

5. Export Section (.edata): This section contains a list of functions that the PE file exports. It's less
common in malware but can be found in malicious DLLs.

6. Relocation Section (.reloc): This section contains information needed if the file must be
relocated in memory. It's often stripped in malware to save space.

7. TLS (Thread Local Storage): Malware may use this section to store data that is unique per
thread, or to define TLS callbacks, which are functions that run before the main entry point.

8. Overlay: This is not a standard section, but data appended at the end of PE file. It's often used
by malware to store additional payloads or data.

Hands-On Example

0 HxD - [C\Users\Malware!\Desktop'a\rev8989.exe] — O e
%] File Edit Search View Analysis Tools Window Help -8 %
Bl WM @6 V]| windows (ans) || hex v

%) revBasd.exe Special editors x
Offset (h) 00 Decoded text ~ | Datainspector

00000000 pD sz 78 HZX. oo

Q0000010 00 00 00 OO0 00 OO Q0 OO0 40 OO 00 00 00 00 00 00 [I‘ ‘ ’ ’I

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 uueessnnnnnnnnns Binary (3 bit) 01001101 ~
Q0000030 00 00 00 OO0 00 OO Q0 OO0 OO0 OO0 00 00 78 00 00 00 ...vevieunns Haoww

; Int& gote 77
- o 1 1
00000040 OE I LI'Th Ulnt8 ote: 77

Q0000050 &9 is program canno

00000060 74 t be run in DOS Int16 gote: 23117
00000070 mode.$..PE..L... Uint16 gote: 23117
00000080 0 Int24 goto: 7887437
00000080 0B Ol Uint24 goto: 7887437
000000A0 00 DO

Int32 goto: 7887437
00000080 00 10 na4aT
oooooco 04 0o Ulnt32 goto: 7887437
000000D0 90 40 Int64 goto: 4302854733
000000ED 00 00 Ulnt64 goto: 4302854733 v
000000F0 00 00 Byte order
00000100 00 00
00000110 00 00 (@ Little endian (0 Big endian

Qoo001zZ0 00 o0
Q0000130 00 00

Offset(h): 0 Overwrite

[JHexadecimal basis (for integral numbers)
v g

PE Signature (4 bytes): 50 45 00 00 - This indicates the beginning of the PE file header.

COFF header:
Machine (2 bytes): - - This is the code for Intel 386 or later processors and compatible processors.
Number of Sections (2 bytes): 0C Q0 - This tells us there are 12 sections in the PE file.

Time Date Stamp (4 bytes): 85 10 5C 63 - This is a UNIX timestamp indicating the time the file was
created.

Pointer to Symbol Table (4 bytes): 00 00 00 00 - There is no symbol table associated with this PE file.

Number of Symbols (4 bytes): 00 00 00 00 - As the pointer to the symbol table is zero, this should also
be zero.

18

ThinkCyber | NX Malware Analysis

Size of Optional Header (2 bytes): EO 00 - This indicates the size of the optional header that follows the
COFF header.

Characteristics (2 bytes): 02 01 - This is a set of flags indicating characteristics of the PE file.

The Optional Header starts immediately after the COFF header. Here is an example of a structure of a
32-bit Optional Header:

1.

10.

11.

12.

13.

14.

15.

Magic number (2 bytes): This is like a secret handshake, it tells the system that this file is a 32-
bit or 64-bit executable file (0x10B for PE32, 0x20B for PE32+).

Major/Minor Linker Version (1 byte each): This is like the version number of the tool that was
used to create this file.

Size of Code (4 bytes): This is the size of the actual program code in the file.

Size of Initialized/Uninitialized Data (4 bytes each): These tell us the size of data that the
program comes with and how much it will create when it runs, respectively.

Address of Entry Point (4 bytes): This is where the program starts running.

Base of Code/Data (4 bytes each): These are the starting points of the program's code and
data in the file.

Image Base (4 bytes): This is the preferred location in the computer's memory where the
program wants to be loaded.

Section/File Alignment (4 bytes each): These are rules for how to organize the program's code
and data in memory and in the file.

Major/Minor Operating System Version (2 bytes each): These tell us the minimum version of
the operating system needed to run the program.

Major/Minor Image Version (2 bytes each): These are the version numbers of the program
itself.

Major/Minor Subsystem Version (2 bytes each): These tell us the minimum version of the
subsystem (a specific part of the operating system) needed to run the program.

Win32 Version Value (4 bytes): This is always zero; it's a leftover from older versions of
Windows and isn't used anymore.

Size of Image (4 bytes): This is the total size of the program when it's loaded into memory.

Size of Headers (4 bytes): This is the size of all the information at the start of the file that
describes the program.

CheckSum (4 bytes): This is a number that helps detect if the file has been damaged or altered.

19

ThinkCyber | NX Malware Analysis

16.

17.

18.

19.

20.

21.

22.

Subsystem (2 bytes): This tells us what type of interface the program uses (like a command-
line or graphical window).

DLL Characteristics (2 bytes): These are flags that control certain behaviors of the file.

Size of Stack Reserve/Commit (4 bytes each): These tell us how much memory the program
reserves and initially uses for its stack (a structure it uses to keep track of function calls).

Size of Heap Reserve/Commit (4 bytes each): These tell us how much memory the program
reserves and initially uses for its heap (a place where it can dynamically allocate memory).

Loader Flags (4 bytes): This is always zero; it's reserved for future use.
Number of RVA and Sizes (4 bytes): This tells us how many entries there are in the next section.

Data Directories (96 bytes): These are pointers to important parts of the file, like the import
and export tables, resource section, etc.

20

ThinkCyber | NX Malware Analysis

DLL Files in Windows

Dynamic Link Libraries, or DLLs, are an integral part of the Windows operating system. A DLL is
essentially a collection of small programs or files loaded when needed by larger programs and can be
used by multiple applications simultaneously.

Common DLLs and Their Uses
Some of the most common DLLs in the Windows environment include:

1. KERNEL32.dll: This is one of the most essential DLL files, providing applications with access to
crucial resources such as memory, process handling, and device I/O operations.

2. USER32.dIl: This DLL is responsible for creating and managing the main graphical interface
elements, including windows, menus, and dialog boxes.

3. GDI32.dll and GDIPLUS.dIl: These DLLs are used for 2D graphics rendering, providing
applications with functions for drawing lines, curves, rectangles, and other graphical elements.

4. ADVAPI32.dll: This DLL provides advanced services related to security, registry access, and
event logging.

5. WS2_32.dIl: This DLL is integral for network operations, providing the necessary functions for
creating sockets and handling network communications.

6. MSVCRT.dIl: This is the Microsoft Visual C Runtime Library which contains functions for
operations like string manipulation, mathematical calculations, and input/output processing.

Windows DLL Functions Used by Malware: A Cheat Sheet

1. CreateMutexA (KERNEL32.dll): This function creates or opens a mutex (a program object that
helps manage simultaneous access to resources). Attackers can use this to prevent multiple
instances of their malware from running on the same system, similar to how you'd lock a
bathroom door to prevent others from entering while it's in use.

2. SetUnhandledExceptionFilter (KERNEL32.dll): This function changes the function that
Windows calls when an unhandled exception (unexpected event or "error") occurs. Malware
can use this to control how the system responds to these events, like choosing how a car reacts
when it hits a bump in the road.

3. ExitProcess (KERNEL32.dll): This function ends the calling process. Malware can use this to
terminate processes, including security programs, almost like turning off a security camera.

4. GetCommandLineA (KERNEL32.dll): This function retrieves the command line string for the

current process. Malware can use this to check the command that was used to execute it, akin
to checking the instructions on a recipe before starting to cook.

21

ThinkCyber | NX Malware Analysis

10.

11.

12.

13.

14.

15.

16.

17.

WaitForSingleObject (KERNEL32.dll): This function waits for a specified object to be signaled
or for a timeout. Malware can use this to delay execution, akin to waiting for a specific time
before performing an action.

RtICreateUserThread (ntdll.dll): This function creates a thread in the context of another
process. Malware can use this to inject malicious code into other programs, similar to a
parasite living inside a host.

CryptEncrypt (advapi32.dll): This function encrypts data. Ransomware, a type of malware, can
use this to encrypt users' files and demand payment to decrypt them, like a kidnapper asking
for ransom.

RegSetValueEx (advapi32.dll): This function sets the data and type of a registry key. Malware
can use this to modify the Windows Registry to enable persistence or disable security features,
almost like a burglar deactivating a home security system.

DeleteFile (KERNEL32.dll): This function deletes an existing file. Malware can use this to
remove files, like a thief taking away evidence.

CreateServiceA (advapi32.dll): This function creates a new service, which is a type of program
that runs in the background. Malware can use this to install itself as a service, hiding itself in
plain sight, like a wolf in sheep's clothing.

OpenProcess (KERNEL32.dll): This function opens an existing process. Malware can use this to
inject code or manipulate other programs, like a puppet master controlling puppets.

ConnectNamedPipe (KERNEL32.dll): This function connects a named pipe to a client process.
Malware can use this for inter-process communication, like passing secret notes between
classmates.

CreateRemoteThread (KERNEL32.dll): This function creates a thread in another process.
Similar to RtlCreateUserThread, malware can use this to inject and execute malicious code in
other programs, like a parasite controlling its host.

LoadLibrary (KERNEL32.dll): This function loads a Dynamic Link Library (DLL) into memory.
Malware can use this to load malicious DLLs, like bringing in a disguised accomplice to a heist.

GetProcAddress (KERNEL32.dll): This function retrieves the address of an exported function
or variable from a DLL. Malware uses this to find the location of the functions it needs to carry
out its malicious activities, like a treasure hunter using a map to find hidden treasure.

WriteProcessMemory (KERNEL32.dll): This function writes data to an area of memory in a
specified process. Malware can use this to inject malicious code into other programs, like a spy
planting a listening device.

VirtualAllocEx (KERNEL32.dll): This function reserves or commits a region of memory within

the virtual address space of a specified process. Malware can use this to secure space for its
malicious code, like a squatter claiming a piece of land.

22

ThinkCyber | NX Malware Analysis

18.

19.

20.

RegCreateKeyEx (advapi32.dll): This function creates or opens a registry key. Malware can use
this to create new registry entries for persistence or to disable security features, similar to a
thief making a secret entrance in a house.

GetModuleHandle (KERNEL32.dll): This function retrieves a handle to a loaded module (like a
DLL). Malware can use this to find modules it needs for its operation, like finding the right tool
in a toolbox.

SetThreadContext (KERNEL32.dll): This function sets the context for a specified thread.
Malware can use this to manipulate the execution of threads in other processes, like a
conductor directing an orchestra.

23

ThinkCyber | NX Malware Analysis

Hex Editors (HxD)
Hex editors are essential tools for reverse engineering, malware analysis, and data recovery. They allow
you to view and edit binary files by displaying their contents as hexadecimal values.
HxD
HxD is a free and user-friendly hex editor for Windows that offers various features, such as searching
and replacing, exporting data, checksum and hash value calculation, and file comparison. HxD can
handle large files and provides a customizable user interface.
Hands-on Example
Exercise: Analyzing a Binary File with HxD

1. Obtainabinary file (e.g., a compiled C program, a malware sample, or an unknown file format).

2. Open HxD and load the binary file.

3. Explore the hex view, which displays the binary data as hexadecimal values, and the text view,
which attempts to display the binary data as ASCIll characters.

4. Use HxD's search feature to find specific data patterns, such as ASCII strings or hexadecimal

values.
L0
%] File Edit Search View Analysis Tools Window Help -8 %
S B Q@i e || Windows (ANSI) || hex s
=8 Q3009] Find = Special editors x
- # | Data inspector
offs=g Text-string Hex-values Integer number Floating point number i Decoded text P
000388 E , (c}97 VeriSign
Search for: ,E » B r, Inc.0...010228 I‘ ‘ ’ ’I
= ' E 0O00000Z..040106Z2 Binary (8 bit) 01101000 ~
& 3595%Z0. 1.0...T7 .
Options Search direction EVeriSign, In Int8 qoto: 104
Text encoding: OAl B c.1.0...0....Ver Uinté goto: 104
(Editor encoding) w (®) Forward [iSign Trust Netw Int16 goto: 29800
000389 O Backward B orkl;0s..U...2Te Uint16 goto: 29800
Q000384 [Case sensitive = E rms of use at E Int24 goto: 7631976
000389 & BEs://wew.verisi Ulnt24 goto: 7631976
ooo3sa4 ¢ on.com/zpa ()0l Int32 goto: 1886680168
000389 B 1'0%..0....VeriSs)
000389 E ign Time Stampin Ulnt32 goto: 1886520168
0003849 Search all Cancel E g Serviceo,."0.. Int64 goto: Invalid w
ooo3e F fHi=....... P Byte order
00038980 61 87 EB B2 .0,...,...hza%e®]])
00038930 L0 5B 80 3D §.c.+.aBE-.. <.= @ Little endian O Big endian
Qo038 o 66 4% A4 >>",,.5é..j] " fH=. . . .
00033980 - s af - 51 F1 B5 9T 0.2085 ~f/.C Auz " []Hexadecimal basis (for integral numbers)
Offset(h): 3891E Block{h): 3891E-38921 Length(h): 4 Overwrite

5. Experiment with HxD's features, such as copying data as text or exporting data to various
formats (e.g., HTML or C source code).

24

ThinkCyber | NX Malware Analysis

Hands-on Example
Exercise: Modifying a Binary File with HxD
1. Obtain a binary file (e.g., a compiled C program, a malware sample, or a game file).

2. Open HxD and load the binary file.

3. Locate a specific value or string that you want to modify (e.g., a hard-coded password or a

configuration setting).

4. Edit the value or string in the hex view or the text view.

5. Save the modified binary file and verify the changes using another tool or by executing the

modified file (if safe).
Hands-on Example

Exercise: Comparing Binary Files with HxD

1. Obtain two binary files that you want to compare (e.g., two different versions of a program or

a clean and infected file).

2. Open HxD and use the "Analysis" feature then "Data comparison" and "Compare".

0 HxD - [ChUsers\Malware\Downloads\W32.CodeRed Worm. C\PATCH\MNT4\,Q3009721.EXE] — (]
E File Edit Search View ENEVES Tools Window Help -
v || B (3 |l Statistics rnws (ANS]) | hex =

z , Checksums...

] Q30097-1.EXE] Q300 Special editors

g 4 :

Offsec(h) 00 01 0Z O30 05 06 07 0 Mext difference =3 oded text * | Data inspector
Q00000000 4D
00000010 B8 4.4 00l
0ooooozo oo Binary (8 bit) 01001101
00000030 00

Int3 goto: 77
00000040 BSE 0 Ulnte B
00000050 R4 68 dotal .
00000060 OB 01 Int16 gotoe: 23117
Q0QQoooT0 Q0 Ulnt16 goto: 23117
00000080 00 10 Int24 gote: 4741709
000000%0 04 00 Ulnt24 go te: 4741709
000000R0 OC 58 T
00000020 00 00 Int32 goto: 4.741.709
Co0ooooco 00 0o Ulnt32 goto: 4741709
000000D0 00 70 Int64 goto: 4299709005
QO00000ED L Byte order
000000F0 0 i) o
00000100 00 00 (®) Little endian (O Big endian
00000110 00 00 00 00 0 Qg 00 00 0 - . .
00000120 00 10 20 0o 0 a0 a0 50 00 © [[] Hexadecimal basis (for integral numbers)
Offset(h): 0 Owenwrite

25

ThinkCyber | NX Malware Analysis

B Hxl - s\Malware\Downloads odeRed Worm. CWPATCHYWTA G - O X
| File Edit Search View Analysis Tools Window Help -8 x
BEEAASIE R RERAE=RE Windows (ANSI)
Q30097~1.EXE 5] Q300972L.EXE Special editors x
Offsec(h) 00 01 O2 03 04 05 06 07 08 09 OR OB OC QD OF OF ecoded text # | Data inspector
00000000 4D SA 48 00 01 00 00 00 04 00 00 oo FF | Compare X

00000010 B8 00 00 00 Q0 00 QO OO 40 00 00 0O 0O

00000020 00 00 00 00 00 00 00 OO0 00 00 00 0o oo | 1 Datasourc immnm
00000030 00 00 00 00 00 OO 00 00 00 00 00 00 48 bte: 77
00000040 BS 01 4C CD 21 00 00 00 50 45 00 00 4C
00000050 A4 €2 01 37 00 00 00 00 00 00 00 00 Eg | 2 Datasource eto 77
00000060 OB 01 06 OR 00 4E 00 OO0 00 06 00 00 00 ‘C:\Users\MaIware\DownIoads\W}E.CodeRed.Worm.(v| |Z| pto: 23117
00000070 00 1C 00 00 00 10 00 OO0 00 €0 00 00 00 : pto: 23117
00000080 00 10 00 00 00 02 00 00 04 00 0o oo o1 | Window amrangement Ecope pto: 4741709
00000090 0% 00 00 00 G0 00 00 00 00 20 01 00 00 | @ Tilevertically ® Al bto: 4741709
000000A0 OC 59 04 00 02 00 00 00 00 00 10 00 00
000000BO 00 00 10 00 00 10 00 00 00 00 0o 0o 1g | O Tilehorizontally O selected data ptor 4741709
000000CO 00 00 00 00 00 00 00 00 D4 57 00 00 64 pia | 4741709
000000D0 00 70 01 00 S8 OS5 00 OO0 00 00 00 00 00 o to: 4299708005 v
000000ED 28 SA 03 00 €8 1A 00 OO0 00 00 00 00 00
000000F0 00 00 00 00 00 00 00 00 00 00 00 00 00 oo oo ow

(®) Little endian () Big endian

00000100 00 00 00 OO0 Q0O OO0 Q0 OO Q0 0O 00 00 00 00 00 OO
00000110 00 00 00 00 Q0O OO0 Q0 OO 00 0O 00 00 00 00 00 OO
00000120 00 10 00 00 BC OO0 Q0 OO0 00 00 OO 0O 00 0O Q0 OO

Offset(h): 0 Owerwrite

[Hexadecimal basis (for integral numbers)

3. Analyze the differences and determine their significance (e.g., identifying code changes or data

modifications).
1l HxD — O *
File Edit Search View Analysis Tools Window Help
BEEATIE R RERIR=NT | Windows (ANSI) | hex
[Q30097-1.EXE 58 Q3009721.EXE Special editors x
- -
Data inspector
.@ Ch\Users\Malware\Downloads\W... EI@ I@ CA\Users\Mal 4D I "W...EIE P
Offset(h) 00 Ol 02 03 04 05 06 07 1™ Offset(h) 00 Ol 02 03 04 05 06 07 '™ 4 4> bl
00000000 4D SA 48 00 01 00 00 00 1 00000000 4D SA 48 00 01 00 00 00 ¢ 01111100
00000010 B8 00 00 00 00 00 00 0O - 00000010 B8 00 00 00 00 00 00 00 - Int8 gote: 124
00000020 00 00 00 00 00 00 00 00 ! 00000020 00 00 00 00 00 00 00 00 ! Ulnta goto: 124
00000030 00 00 00 00 00 00 00 00 ! 00000030 00 00 00 00 00 00 00 00 ! :
Int16 goto: Invalid
00000040 BB 01 4C CD 21 00 00 00 ! 00000040 B8 01 4C CD 21 00 00 00 !
00000050 R4 63 01 37 00 00 00 00 1 00000050 R4 63 01 37 00 00 00 00 ! Uint16 goto: '”"a'fd
00000060 OB 01 06 OR 00 4E 00 00 1 00000060 OB Ol 06 OR 00 4% 00 00 ! Int24 goto: Invalid
00000070 00 1C 00 00 00 10 00 00 1 00000070 00 1C 00 00 00 10 00 00 1 Ulnt24 gote: Invalid
00000080 00 10 00 00 00 02 00 00 ! 00000080 00 10 00 00 00 02 00 00 ! Int32 gote: Invalid
00000090 04 00 00 00 00 00 00 00 ! 00000090 04 00 00 00 00 00 00 00 1 Uint32 oto: | Invalid
00000020 [8 59 04 00 02 00 0O 0O 00000020 8 09 04 00 02 00 0O 0O Intd g o
000000BO 00 00 10 00 00 10 00 00 1 000000BO 00 00 10 00 00 10 00 00 i " gater nvel R
000000CO 00 00 00 00 00 00 00 00 | 000000C0O 00 00 00 00 00 00 00 00 | Byte orde
000000D0 00 70 01 OO0 98 05 00 00 ! 000000D0 00 70 01 00 98 05 00 00 ! . i))
N (@) Little endian OBlg endian
000000E0 28 SA 03 00 68 1R 00 00 1% 000000ED 78 54 03 00 68 1A 00 00 1%
< v 4 i []Hexadecimal basis (for integral numbers)
Offset(h): AD Block(h): AD-AD Length(h): 1 Chverwrite

26

ThinkCyber | NX

PE Analysis Tools (PEiD, CFF Explorer, PEview)
Portable Executable (PE) is a common file format for executables, object code, and DLLs in the
Windows operating system. Analyzing PE files is crucial for reverse engineering, malware analysis, and

software debugging.

PEID

PEID is a free and user-friendly tool for detecting packers, cryptors, and compilers used in PE files. It
comes with a large database of signatures and supports plugins to extend its functionality.

Malware Analysis

4 PEID VD35 —
File: |C:\Users\Malware\Downloads\W32. CodeRed. Worm, C\PATCHWINKY |4
Entrypoint: [00001C00 EP Section: [text [>]
File Offset: [00000EDD FirstBytes: [BLECB400 | > |
Linker Info: [6. 10 Subsystem: [Win32 GUI [=]
Nothing found [Overlay] *
Multi Scan | Task Viewer | Options About | Exit |
¥ stay on top =
CFF Explorer

CFF Explorer is a versatile PE analysis tool that offers various features, such as viewing and editing PE
file structures, importing and exporting data, and disassembling code. CFF Explorer also includes a

built-in hex editor and supports scripting for automation.

& CFF Explorer VIl - [Q30097~1.EXE] -
File Seftings 7
H Q300971 EXE
-
Property Value
= - 030037~ “
pEFea LEXE File Name Ci\Users\ Mahware\ Downloads\W32.CodeRed Worm.C\PATCHUWINK, ..
|— (2l Dos Header
=] Mt Headers File Type Portable Executable 32
'3 Fie Header File Info Mullsoft PIMP Stub -> SFX
ptional Header
(& Data Directories] File Size 231.72 KB (237280 bytes]
[(3 Section Headers [PE Size 225.12 KB (230520 bytes)
— [Import Directory
|— (3 Resource Directory Created Friday 12 May 2023, 18.29.37
— 'q"“"‘*‘m Converter Modified Tuesday 01 June 2004, 02,0050
— “k Dependency Walker
| 9 Hex Editor Accessed Friday 12 May 2023, 18.20.37
— % dentificr MD5 B4474BB58017EF09471 CSERED3932405
— "b;, Import Adder
|— %, Quick Di SHA-1 D16977B17582391D7D0SDDSCCT3S03627BE06E02
— %, Rebuilder
[?’m Editor v | Property Value

PEview

PEview is a lightweight and straightforward tool for viewing the internal structure of PE files. It allows
you to inspect various PE file sections, such as the headers, data directories, and import/export tables.

Eile View Ge Help

2000

|®m *x# || mo =

Qy PEview - C\Users\Malware\Downloads\W32,CodeRed Worm, C\PATCHYWINIOQ30097~ 1, EXE

=-Q30097~1.EXE

- IMAGE_DOS_HEADER

i MS-DOS Stub Program

£ IMAGE_NT_HEADERS
Signature
IMAGE_OPTIONAL_HEAD
* IMAGE_SECTION_HEADER .
- IMAGE_SECTION_HEADER
- IMAGE_SECTION_HEADER
SECTION text

- SFCTION rare
< >

~ pFile

0000004C
0000004E
00000050
00000054
00000058
0000005C
0000005E

v

Viewing IMAGE_FILE_HEADER

Data Description
014C Machine
0003 Number of Sections
370168A4 Time Date Stamp
00000000 Pointer to Symbaol Table
00000000 Number of Symbols
00EQ Size of Optional Header
010F Characteristics
0001
0002
0004
0ona

Value
IMAGE_FILE_MACHINE 1386

1999/03/31 Wed 00:13:24 UTC

IMAGE_FILE_RELOCS_STRIPPED
IMAGE_FILE_EXECUTABLE _IMAGE
IMAGE_FILE_LINE_NUMS_STRIPPED
IMAGF FIl F | OCAI SYMS STRIPPFD

27

ThinkCyber | NX Malware Analysis

Hands-on Example

Exercise: Identifying Packers with PEiD
1. Obtain a PE file (e.g., a compiled Windows program or a malware sample).
2. Open PEID and load the PE file.

3. Observe the detected packer, cryptor, or compiler in the PEiD interface.

[PEID v0.95 - X

File: | C:\Users\Malware\Desktop\basicstatic\basicstatic\FILED2

Entrypoint: 00005410 EP Section: [UPX1 =1
File Offset: 00000810 FirstBytes: [s0,BE,00,50 ||
Linker Info: |5.0 Subsystem: |Win32 console ﬂ

Nothing found *

Multi Scan Task Viewer Options About | Exit |
|v Stay on top = | I

4. Research the detected packer, cryptor, or compiler to learn more about its features and how
it might affect your analysis.

UPX (Ultimate Packer for eXecutables) is an open-source, portable, high-performance executable
packer for several different executable formats. It achieves an excellent compression ratio and offers
very fast decompression.

Here's how it works:

When a program (an executable) is packed with UPX, the data is compressed to take up less space.
When you run the packed program, the data is decompressed in memory, and the program is executed
normally. This can be beneficial for reducing the disk space usage of software, or for software
distribution where you want to minimize download times.

However, the use of UPX is not limited to legitimate applications. Many malware authors use UPX and
other packers to obfuscate their code, making it harder for antivirus software to detect the malware.
This is because the packed executable's code looks completely different from the original malware
code, so signature-based detection methods may fail to identify it.

It's important to note that while packing an executable can be used to hide malicious code, packing
itself is not inherently malicious. There are many legitimate reasons to pack an executable, such as
reducing its size for storage or distribution.

For malware analysis, tools like UPX can also be used in a process called unpacking, where the packed
executable is transformed back into its original form for further analysis. This can sometimes be as
simple as using the -d option with UPX (e.g., upx -d packed.exe), but many times malware authors will
modify the packing process to make it more difficult to unpack and analyze the executable.

28

ThinkCyber | NX Malware Analysis

Hands-on Example
Exercise: Analyzing a PE File with CFF Explorer
1. Obtain a PE file (e.g., a compiled Windows program or a malware sample).

2. Open CFF Explorer and load the PE file.

ww' CFF Explorer VIII - [FILEOZ] — O X
File Settings 7

Al = FILED2

N
> B
Property Value
B = File: FILED2 ~
File Mame Ch\Users\Malware\Desktop'\basicstatic\basicstatic\FILED2
— [Dos Header
[Z] Nt Headers File Type Portable Executable 32
|2l File Header .
File Inf UPXv3.0
[Z] Optional Header felnte ¥
[Z] Data Directories [x] File Size 3.00 KB (3072 bytes)

&) Section Headers] PE Size 3.00 KB (3072 bytes)

— ﬁlmport Directory

— ‘ﬁim‘”’ Converter Created Friday 12 May 2023, 20.28.57

—), Dependency Walker Modified Wednesday 19 January 2011, 21.10.41

— %, Hex Editor

— aﬁa Identifier Accessed Friday 12 May 2023, 20.28.57

— % Import Adder MD5 2363436872404DADAEIE46991E355B33

—), Quick D

— ?; Rebuilder " SHA-1 SACTEFACBCBTVE2008A01EASCETBIGAF200CIFCE

3. Explore the PE file's structure by navigating through sections, such as headers, import/export
tables, and resources.

w' CFF Explorer VIII - [FILEOZ2] - O *
File Settings 7
\‘\ H @ FILED2 X
i Module Name Imports OFTs TimeDateStamp | ForwarderChain | Name RVA FTs (1AT)
B =] Fite: FILED2 "
— [Dos Header
[Z) Mt Headers szhnsi (nFunctions) Dword Dword Dword Dword Dword
|2l File Header
[Z] Optional Header
|2 Data Directories [x] ADVAPI32.dII 1 00000000 00000000 00000000 00D0DG0AS 00006080

— =) Section Headers [x]
MSVCRT.dII 1 00000000 00000000 00000000 000060B2 00006083
— ﬁhnl Directory

—), Address Converter WININET.dll 1 00000000 00000000 00000000 DDODGOBD 00005030
— %, Dependency Walker
— %, Hex Editor

— 4, Identifier

— 9, Import Adder

—), Quick Disassembler
— ‘E;Mhulder

KERMEL32.DLL] 00000000 00000000 00000000 00006093 00006064

4. Use CFF Explorer's built-in hex editor to view and modify the binary data of the PE file.

w' CFF Explorer VIII - [FILEOZ2] — O *
File Settings 7

gy = FILEO2

ERCI |

e e e R

[Z) Mt Headers
I File Header Of fost 0 1 2 3 4 5 & 7 8 9 4B CDEF Ascii
2 Optional Header 00000000 | 4D 54 90 00 03 00 O0 00 04 00 00 00 FF FF 00 00 | MZ 0. .0 .. %v..
(= Data Directories] 00000010 | B& 00 00 00 00 00 OO0 00 40 00 00 00 00 00 00 o0 | .. @

gooooozo | o0 00 00 00 OO0 00 00 OO0 0O OO0 00 0O OO0 o0 00 oo

— =) Section Headers [x]

oooooo30 | o0 00 00 00 OO0 00 00 OO0 00 OO0 00 OO0 EO OO 00 0o
1, 0LIITh

— [Import Directory 00000040 | 0E 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54 68 |0 20.°

|— 4, Address Converter 00000050 | 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F | is.program.cannc

| 4\ Dependency Walker 00000060 | 74 20 62 65 20 72 75 6E 20 63 6E 20 44 4F 53 20 | t.be.run.in.DOS.

— i, Hex Editor

— 4, Identifier v v

29

ThinkCyber | NX Malware Analysis

Hands-on Example

Exercise: Viewing PE File Structure with PEview
1. Obtain a PE file (e.g., a compiled Windows program or a malware sample).
2. Open PEview and load the PE file.

3. Inspectthe PE file's structure by navigating through sections, such as headers, data directories,
and import/export tables.

4. Observe any interesting or unusual characteristics of the PE file that may warrant further
investigation.

30

ThinkCyber | NX Malware Analysis

Windows Common Processes

These are legitimate Windows processes, but attackers might misuse or impersonate them for
malicious purposes. To identify potential malware, analyze the processes' behavior, command line
arguments, parent processes, file locations, and network activity.

Svchost.exe

svchost.exe, or Service Host, is an integral and legitimate component of the Microsoft Windows
operating system. It serves as a shell for loading services from Dynamic Link Library (DLL) files, which
contain the code and data used by multiple applications simultaneously.

The Role of svchost.exe

Upon Windows startup, the operating system checks the Windows Registry and builds a list of Services
or groups of Services that need to load. This loading process involves the Service Host (svchost.exe),
located in the System32 folder. The services hosted by svchost.exe are primarily implemented as
dynamically linked libraries (dll files).

The svchost.exe process runs with specific parameters or flags, each corresponding to different
functionalities:

e The -k flag requests information from a specific registry key.
e The -p flag enforces various policies.
e The -s flag instructs svchost.exe to load only the service specified by the flag from the selected

group.
17 Task Manager = O X
File Options View

Processes Performance App history Startup Users Details Services

=
Mame PID Status User name CPU Memory (p.. Description 2
[#] svehost.exe 344 Running LOCAL SERVICE 00 2,700 K Host Process for Windows Services
[85] swchost.exe 268 Running SYSTEM 00 1,076 K Host Process for Windows Services
[#] svchost.exe 1032 Running LOCAL SERVICE 00 2,792 K Host Process for Windows Services
[swchost.exe 1284 Running METWORK SERVICE 0o 2980K Host Process for Windows Services
[0 svehost.exe 1416 Running LOCAL SERVICE 00 444K Host Process for Windows Services
[85] swchost.exe 1524 Running LOCAL SERVICE 00 236K Host Process for Windows Services
[#] svchost.exe 1332 Running LOCAL SERVICE 00 360 K Host Process for Windows Services
[#=] svehost.exe 1568 Running SYSTEM 00 1,360 K Host Process for Windows Services
[85] swchost.exe 1668 Running SYSTEM 00 620K Host Process for Windows Services
[85] swchost.exe 1720 Running LOCAL SERVICE 00 424K Host Process for Windows Services
[#5] swchost.exe 1800 Running LOCAL SERVICE 0o 430K Host Process for Windows Services
[2=] swchnst.exe 19496 Runnina SYSTEM [1}] 1692 K Host Process for Windows Services M
Fewer details End task

Multiple Instances of svchost.exe Processes
Multiple instances of svchost.exe processes are common in a Windows operating system. Grouping

services under different svchost.exe processes helps in better control, management, and debugging of
the services.

31

ThinkCyber | NX

You can view these

groups

Malware Analysis

in the

Windows

Registry under the

HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\CurrentVersion\Svchost.

following key:

ﬁ Registry Editor
File Edit View Favorites Help

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion' SvcHost

LocalServiceHttp
LocalServiceMetworkRestricted o,
< >

ﬂ_"]diagnnstic;

ab| DevicesFlow

SvcHost A || Name
appmodel 28] (Default)
?:;Q;:dAccessManagerS\r(at) sppmodel

aI']A;:lpReat:Iiﬂess
defragsve -
Devi cgesFlow ab) Assignedfccess...
diagnostics "_b]AﬂﬂStSVGrUup
GraphicsPerfSvcGroup a_b]bthﬂudiosvc
ICService 25| Camera
LocalService 3b| DeomLaunch
LocalServiceAndMolmpersonatior “_b]de‘flags\f(

ab) GraphicsPerfSvc...

Type

REG_SZ
REG_MULTI_SZ
REG_MULTI_SZ
REG_MULTI_SZ
REG_MULTI_SZ
REG_MULTI_SZ
REG_MULTI_SZ
REG_MULTI_SZ
REG_MULTI_SZ
REG_MULTI_SZ
REG_MULTI_SZ
REG_MULTI_SZ

Data

(value not set)

TileDataModelSve StateRepository WalletService E...
AppReadiness

AssignedAccessManagersve

AxlnstSV

BthHFSrv

FrameServer

Power L5M Brekerlnfrastructure PlugPlay Dcomla...
defragsve

DevicesFlowUserSve

DiagSve

GraphicsPerfSve

svchost.exe High CPU or Disk Usage

Svchost.exe can occasionally display high resource utilization. Although it can be challenging to isolate
the exact service causing this, tools like the built-in Resource Monitor or Sysinternals Process Explorer

can assist.

By right-clicking on the svchost.exe process and selecting 'Go to Process', you can identify the
associated services. For a more detailed analysis, tools like the Svchost Viewer provide comprehensive
information about the services linked with a specific svchost process, including process ID, data
read/written, service status, and more.

172 Task Manager
File Options View
MName

Service Host: Local Service (11)

Service Host: Local Service (Met...

Expand

Serv End task
Serv Resource values b
Serv Create dump file
Serv Go to details
- Open file location
Fewer ¢ Search online
Properties

2%
CPU

0%

Processes Performance App history Startup Users Details Services

25%
Memory
0.1 MB

oOME
0OMB
0.1 MB
1.3MB
0 MB

0.2 MB

- O x
0% 0%
Disk Metwork
0 MB/s 0 Mbps ~
0 MBE/s 0 Mbps
0 MB/s 0 Mbps
0 MB/s 0 Mbps
0 ME/s 0 Mbps
0 MB/s 0 Mbps
0 MB/s 0 Mbps
nn Ay T e
End task

Is svchost.exe Infected?

While svchost.exe is a legitimate file, malware can impersonate it to deceive antivirus software. To
verify svchost.exe's authenticity, check its digital signature. Genuine files are signed by their
manufacturers. You can access this information by opening Task Manager, going to the Details tab, and
checking the svchost.exe properties.

32

ThinkCyber | NX Malware Analysis

8 svchost.exe Properties X
1% Task Manager | gopor Dighal Signatures Securty Details Previous Versions - o
File Options Vig
Signature list
Processes Perforn
4 MName of signer: Digest algorithm Timestamp B

Name Microsoft Windows Publisher ~ sha256 Friday, Septem p... Description ol
[#5] swchost.exe DK Host Process for Windows Services

[85] swchost.exe 6K Host Process for Windows Services

[®E] svchost.exe < > DK Host Process for Windows Services

[85] swchost.exe DK Host Process for Windows Services

[85] swchost.exe Details AK Host Process for Windows Services

[85] swchost.exe AK Host Process for Windows Services

[85] swchost.exe DK Host Process for Windows Services

[#] svchost.exe DK Host Process for Windows Services

[85] swchost.exe DK Host Process for Windows Services

[85] swchost.exe EK Host Process for Windows Services

[85] swchost.exe DK Host Process for Windows Services
[Eleuchnstexe | A K Hnst Process for Windows Services &7

Fewer details End task
Cancel Apply

If you suspect an infection, you can scan the svchost.exe file using Windows Defender or any third-
party antivirus software.

Explorer.exe

Explorer.exe, also known as Windows Explorer, is a critical component of the Windows operating
system. As the primary interface through which users interact with Windows, it manages various
aspects of the user experience, including the desktop, taskbar, and file management system.

17l Task Manager — O ®
File Options View

Processes Performance App history Startup Users Details Services

=

Name PID Status User name CPU Memory (p.. Description 2
i m explorer.exe 3364 Running Malware 00 5,720 K Windows Explorer

[®=lfontdrvhost.exe 748 Running UMFD-0 00 0K Usermode Font Driver Host
[®=lfontdrvhost.exe 756 Running UMFD-1 00 0K Usermode Font Driver Host

[#5] Isass.exe 628 Running SYSTEM 00 1,016 K Lecal Security Autherity Process

(s msdtc.exe 2192 Running MNETWORK SERVICE 0o 0K Microsoft Distributed Transaction Coor...

E’ regedit.exe 1732 Running Malware 0o 52K Registry Editor

[®] RuntimeBroker.exe 4532 Running Malware)] 1,272 K Runtime Broker

[#] RuntimeBroker.exe 4640 Running Malware 00 0K Runtime Broker

¢ Searchindexer.exe 3408 Running SYSTEM] 616 K Microsoft Windows Search Indexer

[#=] SearchUl.exe 4324 Suspended Malware 00 0K Search and Cortana application

[#=] SecurityHealthServic... 928 Running SYSTEM 00 0K Windows Security Health Service

Bl sErvices. BXE B16 Runninn SYSTER [11] ANR K Services and Cantroller ann bt

Fewer details End task

33

ThinkCyber | NX Malware Analysis

The Role of explorer.exe

Explorer.exe is the graphical user interface (GUI) shell provided by Windows. It is responsible for
providing the user interface that allows users to interact with files and applications. This includes the
taskbar, start menu, desktop icons, and the File Explorer utility. Essentially, explorer.exe is a program
that controls much of the user's experience in the Windows operating system.

When Windows starts, it automatically runs explorer.exe to provide the user interface. This process
runs throughout the entire duration the system is active, facilitating user interaction with the system.

Managing the explorer.exe Process

The explorer.exe process usually operates without user intervention. However, at times, it might
malfunction or stop responding. The most common symptom of such a situation is a frozen or missing
taskbar or desktop.

If explorer.exe crashes, it can usually be restarted using the Task Manager:

1. Press Ctrl + Shift + Esc to open Task Manager.
2. Click on File > Run new task.
3. Type explorer.exe and press Enter.

This will restart the explorer.exe process and, in most cases, resolve any temporary glitches or freeze-
ups.

Explorer.exe High CPU or Disk Usage

Occasionally, explorer.exe may display high CPU or disk usage. Although this behavior can be normal
during high file system activity, consistent high resource usage might indicate a problem.

Several factors can contribute to high resource usage by explorer.exe:

1. Large number of startup applications: If too many applications are set to launch at startup,
explorer.exe might consume a lot of resources as it manages these processes. You can manage
startup applications from the Startup tab in Task Manager.

2. Corrupted system files: If Windows system files, especially those related to explorer.exe, are
corrupted, they may cause high resource usage. Running the System File Checker tool can help
detect and repair corrupted system files.

3. Malware or viruses: Malware often targets critical system processes like explorer.exe to hide
its activities. Running a complete system scan with a reliable antivirus can help detect and
remove such threats.

Is explorer.exe Infected?
As with svchost.exe, explorer.exe is a critical system process that malware can impersonate to evade
detection. Therefore, if explorer.exe exhibits suspicious behavior, like high resource usage with no

apparent reason, it might be infected.

To check if explorer.exe is genuine, you can follow the same steps as for svchost.exe. Open Task
Manager, go to the Details tab, right-click on explorer.exe, and select Properties. In the Digital

34

ThinkCyber | NX Malware Analysis

Signatures tab, you can see the name of the signer, which should be Microsoft Corporation for the
legitimate explorer.exe.

Remember to keep your antivirus software updated and regularly scan your system to protect against
such threats.

Rundll32.exe

Rundll32.exe, similar to svchost.exe and explorer.exe, is an integral component of the Windows
operating system. This process is designed to launch functionality stored in shared Dynamic-Link
Library (DLL) files.

The Role of rundll32.exe

Rundll32.exe is a legitimate Windows file that executes functions embedded in DLL files. DLL files are
libraries containing code and data that can be used by multiple programs concurrently. Unlike
executable files, you cannot directly run DLL files, but they can be called upon by other executable files
that require their services.

Rundll32.exe thus serves as a bridge between the system and the DLL files, facilitating the calling and
execution of functions encapsulated within DLL files.

Managing the rundll32.exe Process

Under normal conditions, rundll32.exe operates seamlessly without user intervention. However,
situations may arise where rundll32.exe behaves abnormally, causing problems such as system
slowdowns or freezes.

If rundll32.exe becomes problematic, identifying the root cause is vital. You can do this by analyzing
the command-line arguments of the process to identify which DLL file and function the process is
invoking. You can view this information in the Task Manager by going to the Details tab and adding the
'Command line' column.

Rundli32.exe High CPU or Disk Usage
At times, rundli32.exe might exhibit high CPU or disk usage. This can occur for several reasons:

1. Malfunctioning DLLs or software: If a DLL file or program that rundll32.exe is invoking behaves
abnormally, it could cause high resource usage. In such cases, updating or reinstalling the
associated software might resolve the issue.

2. Virus or malware: Malware often uses the names of legitimate system files to avoid detection.
A virus could be impersonating rundll32.exe and causing high resource usage. Running a full
system scan with a reliable antivirus can detect and remove such threats.

Is rundli32.exe Infected?

Like other critical system files, rundll32.exe is a target for malware. If you observe rundll32.exe
behaving suspiciously or consuming high resources without an apparent reason, it might be infected.

To verify the authenticity of rundll32.exe, check its digital signature. Genuine rundll32.exe files are
signed by Microsoft Corporation. You can view this information in the Task Manager by going to the

35

ThinkCyber | NX Malware Analysis

Details tab, right-clicking on rundll32.exe, and selecting Properties. Under the Digital Signatures tab,
you should see the name of the signer.

Cscript.exe
Cscript.exe is another essential component of the Windows operating system, specifically involved in
script processing.

The Role of cscript.exe

Cscript.exe, or Console Based Script Host, is a Microsoft Windows built-in utility used to interpret
scripts written in scripting languages like VBScript or Jscript. It offers a command-line interface for
Windows Script Host (WSH), allowing scripts to be run from the command console (cmd.exe).

While the companion utility wscript.exe (Windows Based Script Host) displays output in message
boxes, cscript.exe outputs to the command console. This feature makes it particularly useful for
running scripts that automate system tasks or batch processing tasks.

Managing the cscript.exe Process

Cscript.exe is an on-demand process, meaning it only runs when called upon to interpret a script.
Consequently, you will typically only see it running in your Task Manager when a script is being
executed.

However, if cscript.exe appears to be consuming substantial system resources or running without your
initiation, it could indicate an issue such as a malfunctioning script or even malware activity.

If cscript.exe becomes problematic, the first step to troubleshooting would be to identify the script it's
running. This can usually be determined from the command-line arguments visible in the Task Manager
(under the Details tab, with '‘Command line' column enabled).

Cscript.exe High CPU or Disk Usage
High resource usage by cscript.exe could be due to several factors:

1. Resource-intensive scripts: If a script being run by cscript.exe is performing complex or
extensive tasks, it might cause high CPU or disk usage. Optimizing the script or running it
during off-peak times may alleviate the issue.

2. Malfunctioning scripts: A script with an error or loop could cause cscript.exe to consume
excessive resources. Reviewing and debugging the script should resolve the problem.

3. Malware: As with other system processes, malware can impersonate or exploit cscript.exe to
evade detection. Running a full system antivirus scan can help detect and eliminate such
threats.

Is cscript.exe Infected?
As a legitimate system process, cscript.exe could be targeted by malware. Unusual activity by

cscript.exe, such as running without user initiation or high resource usage, could be indicative of an
infection.

36

ThinkCyber | NX Malware Analysis

To verify the legitimacy of cscript.exe, check its digital signature. A genuine cscript.exe file should be
signed by Microsoft Corporation. This can be confirmed in the Task Manager's Details tab by right-
clicking on cscript.exe, selecting Properties, and checking the Digital Signatures tab.

Regsvr32.exe

Regsvr32.exe, like many other system processes such as cscript.exe and rundll32.exe, is a critical part
of the Windows operating system. This process is specifically linked to the registration and
unregistration of DLL files and ActiveX controls within the system's registry.

The Role of regsvr32.exe

Regsvr32.exe, short for 'Register Server', is a command-line utility in Windows used to register and
unregister Dynamic-Link Library (DLL) files and ActiveX controls in the Windows Registry. It enables
programs to use the functionality stored in DLL files and ActiveX controls, which are essential
components of many applications and Windows features.

When a new DLL file or ActiveX control is added to the system, it needs to be registered to function
correctly. Similarly, when it's removed, it should be unregistered. The regsvr32.exe command is
typically used for these actions, making it a vital utility for software installation, updates, and removals.

Managing the regsvr32.exe Process

Typically, regsvr32.exe operates quietly in the background, invoked only when a program needs to
register or unregister a DLL file or ActiveX control. It's not a process that continuously runs or appears
in the Task Manager unless it's actively performing a task.

However, if regsvr32.exe shows up unexpectedly in Task Manager or appears to be consuming a lot of
system resources, it may indicate a problem, like a malfunctioning program or even a malware
infection.

Regsvr32.exe High CPU or Disk Usage

Regsvr32.exe isn't typically associated with high resource usage. If you notice high CPU or disk usage
linked to regsvr32.exe, consider these potential causes:

1. Software installation or removal: If you've recently installed or removed software,
regsvr32.exe might be active, registering or unregistering DLL files or ActiveX controls.

2. Corrupted or missing DLLs/ActiveX controls: If a DLL file or ActiveX control is corrupted or
missing, regsvr32.exe might repeatedly attempt to register it, leading to high resource usage.

3. Malware: Malicious programs sometimes disguise themselves as legitimate processes, like
regsvr32.exe, to avoid detection. If you notice regsvr32.exe running without an apparent
reason, it might be malware masquerading as the genuine process.

Is regsvr32.exe Infected?
If you observe suspicious behavior from regsvr32.exe, it could be a sign of malware. To check the

legitimacy of regsvr32.exe, view its digital signature, which should be signed by Microsoft Corporation
for the authentic file.

37

ThinkCyber | NX Malware Analysis

Dllhost.exe
Dllhost.exe, similar to regsvr32.exe and cscript.exe, is an integral part of the Windows operating
system. Its primary function revolves around the management and control of DLL-based applications.

The Role of dllhost.exe

Dllhost.exe, also known as COM Surrogate, is a process that hosts DLL files and enables them to run in
their own process space instead of running within the process space of the calling application. This
architecture helps enhance system stability. If a COM object crashes, it won't affect the original
application's process space but only the COM Surrogate process.

15l Task Manager — O *
File Options View

Processes Performance App history Startup Users Details Services

7
MName FID Status User name CPU Memeory (p... Description 63
B crmd.exe 3504 Running Malware o0 0K Windows Command Processor
B conhost.exe 3244 Running Malware o0 64K Console Window Host
[csrss.exe 388 Running SYSTEM o0 20K Client Server Runtime Process
[csrss.exe 434 Running SYSTEM o0 0K Client Server Runtime Process
ctfmon.exe 3596 Running Malware o0 1,036 K CTF Loader
[55] dasHost.exe 1256 Running LOCAL SERVICE o0 0K Device Association Framework Provider...
[5] dilhost.exe 2812 Running SYSTEM 00 0K COM Surrogate
[55] dwm.exe 948 Running DWM-1 o0 5032K Desktop Window Manager
explorer.exe 3364 Running Malware o0 4,244 K Windows Explorer
[5| fontdrvhost.exe 748 Running UMFD-0 00 0K Usermode Font Driver Host
[®E|fontdrvhost.exe 756 Running UMFD-1 o0 0K Usermode Font Driver Host
Wl Isass.exe A28 Runningn SYSTEM nn T2RK_ local Securite Authorite Process v
Fewer details End task

The dllhost.exe process is commonly used to generate thumbnail images in Windows Explorer and to
run background tasks initiated by various applications.

Managing the dllhost.exe Process

Dllhost.exe should run smoothly under typical circumstances, requiring minimal user intervention.
However, if you notice that it's consuming a lot of system resources, or if you observe multiple
instances of it running simultaneously, it could be indicative of an issue.

If dllhost.exe appears problematic, the initial step towards troubleshooting involves identifying which
DLL or COM object the process is hosting. The details of the hosted objects are typically included in
the command-line parameters of dllhost.exe, which can be viewed in the Task Manager under the
Details tab.

Dllhost.exe High CPU or Disk Usage
High CPU or disk usage by dllhost.exe could be a result of a few factors:
1. Resource-intensive DLLs or COM objects: Certain DLL files or COM objects could require
significant resources, leading to high CPU or disk usage.
2. Malfunctioning DLLs or COM objects: DLLs or COM objects with errors or bugs can cause

dllhost.exe to consume excess resources.
3. Malware: Malicious software might impersonate dllhost.exe to avoid detection.

38

ThinkCyber | NX Malware Analysis

Is dllhost.exe Infected?

As a system process, dllhost.exe could be a target for malware. Suspicious behavior, such as
unexpected high resource usage or instances of dllhost.exe running without an apparent reason, could
indicate a malware infection.

Conhost.exe

Conhost.exe, standing for Console Host, is a crucial process in the Windows operating system. Much
like the previously discussed processes, such as dllhost.exe and regsvr32.exe, conhost.exe plays a
significant role in system operations.

The Role of conhost.exe

The conhost.exe process, short for Console Window Host, is involved in the management of the
command-line interface in Windows. Introduced in Windows 7 to replace the csrss.exe process for this
function, conhost.exe ensures smooth interaction between command-line applications and the
elements of the graphical Windows interface, such as the desktop, window controls, and the clipboard.

This process is essential for properly rendering the command-line window and handling user inputs.
Any command-line window you open, whether it’'s Command Prompt, PowerShell, or any other, has
an associated conhost.exe process.

Managing the conhost.exe Process

You might observe multiple instances of conhost.exe in your Task Manager, and this is typically normal.
Each time you open a command-line application, a new instance of conhost.exe is started to manage
it. These instances usually consume minimal system resources and close automatically when the
associated command-line window is closed.

However, if you notice a conhost.exe process consuming a significant amount of system resources or
running without an associated command-line window, it could be an indication of an issue.

Conhost.exe High CPU or Disk Usage
High resource usage by conhost.exe could be due to a few reasons:

1. Resource-intensive command-line applications: If you're running a command-line application
that's performing intensive tasks, the associated conhost.exe process might consume more
resources.

2. Malfunctioning command-line applications: An error or bug in a command-line application
could cause the associated conhost.exe process to consume excessive resources.

3. Malware: Some malware might disguise itself as conhost.exe to evade detection.

Is conhost.exe Infected?
If you observe suspicious behavior from conhost.exe, it could be a sign of malware. To verify the
legitimacy of conhost.exe, check its digital signature. The genuine conhost.exe file should be signed by

Microsoft Corporation. You can access this information in the Task Manager under the Details tab by
right-clicking on conhost.exe, selecting Properties, and navigating to the Digital Signatures tab.

39

ThinkCyber | NX Malware Analysis

Certutil.exe

Certutil.exe, much like conhost.exe, dllhost.exe, and regsvr32.exe, is a critical process in the Windows
operating system. Its primary function revolves around managing and troubleshooting aspects related
to certificates in Windows.

The Role of certutil.exe

Certutil.exe is a command-line utility that is used to obtain certificate authority information and
configure Certificate Services. This tool provides a broad range of functions, including dumping and
displaying certification authority (CA) configuration information, verifying the Certificate Revocation
List (CRL), and much more.

Its primary function is to ensure that the certificate services in Windows operate smoothly, and it
assists in maintaining and validating the security of various applications and services.

Managing the certutil.exe Process

Unlike many system processes, certutil.exe is not a continuously running process. Instead, it's invoked
when required, especially when dealing with tasks related to certificates. When it's active, you can see
it in your Task Manager, but under normal circumstances, it should not consume significant system
resources.

However, if you notice it running frequently or consuming a large amount of system resources, it could
be indicative of an issue, such as a misconfiguration, an error with a certificate, or even a malware
infection.

Certutil.exe High CPU or Disk Usage

Under typical conditions, certutil.exe should not be associated with high CPU or disk usage. If you
notice such behavior, it might be due to:

1. Intensive certificate-related tasks: Tasks such as managing or validating numerous certificates
may temporarily increase CPU or disk usage.

2. Malware: Malicious software sometimes disguises itself as legitimate processes, such as
certutil.exe, to evade detection.

Is certutil.exe Infected?
If you observe suspicious behavior from certutil.exe, such as running unexpectedly or high resource

usage, it could be a sign of malware. To verify the legitimacy of certutil.exe, check its digital signature.
The genuine certutil.exe file should be signed by Microsoft Corporation.

40

ThinkCyber | NX Malware Analysis

Csrss.exe

Csrss.exe, similar to certutil.exe, conhost.exe, and dllhost.exe, is an integral part of the Windows
operating system. Its primary role revolves around managing the graphical instruction set under a
Windows session.

The Role of csrss.exe

Csrss stands for Client/Server Runtime Subsystem. It’s a critical process that manages and controls the
majority of the graphical instruction sets in Windows. Csrss is involved in creating or deleting threads,
and implementing the console windows, also known as command prompt. In earlier versions of
Windows, before Windows 7, it was responsible for drawing the entire Windows interface.

1% Task Manager - O *
File Options View
Processes Performance App history Startup Users Details Services
MName PID Status User name CPU Memeory (p.. Description G
B cmd.exe 3904 Running Malware 00 0K Windows Command Processor
B conhost.exe 3244 Running Malware 00 64K Console Window Host
{[0=] csrss.exe 388 Running SYSTEM 00 32K Client Server Runtime Process
[#] csrss.exe 434 Running SYSTEM 00 0K Client Server Runtime Process
ctfmon.exe 3996 Running Malware 00 443K CTF Loader
[] dasHost.exe 1256 Running LOCAL 5ERVICE 00 0K Device Association Framework Provider...
[dilhost.exe 2812 Running SYSTEM 00 36K COM Surrogate
[E] dwm.exe 943 Running DWM-1 00 5108 K Desktop Window Manager
explorer.exe 3364 Running Malware 00 2,732 K Windows Explorer
[fontdrvhost.exe 748 Running UMFD-0 00 0K Usermode Font Driver Host
[fontdrvhost.exe 756 Running UMFD-1 00 0K Usermode Font Driver Host
2=l Isass.exe h28 Runninn SYSTEM nn 3ANK | acal Securitw Authoritv Process d
Fewer details End task

The csrss.exe process is launched by the system at startup, and there will typically be at least one
instance of this process running at all times. This process is essential for the stable and secure
functioning of the Windows system and should not be terminated.

Managing the csrss.exe Process
Under normal circumstances, csrss.exe operates quietly in the background, requiring no user
intervention. However, if you notice that it's consuming an unusually high amount of system resources,
it might be indicative of an issue.

Csrss.exe High CPU or Disk Usage

High CPU or disk usage by csrss.exe is uncommon and could indicate a problem. The following factors
might be responsible:

1. System or application errors: These might cause csrss.exe to consume more resources than
usual.
2. Malware: Some malware can masquerade as csrss.exe to avoid detection.

Is csrss.exe Infected?

If you observe suspicious behavior from csrss.exe, it could be a sign of malware. To verify the legitimacy
of csrss.exe, check its digital signature. The genuine csrss.exe file should be signed by Microsoft.

41

ThinkCyber | NX Malware Analysis

Winlogon.exe
The winlogon.exe process, much like the other processes we've discussed - csrss.exe, certutil.exe,
conhost.exe, and others, is an essential part of the Windows operating system.

The Role of winlogon.exe

Winlogon.exe stands for Windows Logon Application. It's a critical system component responsible for
handling the login and logout procedures on your PC. When you boot up your computer and enter
your credentials, it is the winlogon.exe process that verifies your username and password, allowing
you to log into your Windows user account.

12| Task Manager -] *
File Options View
Processes Performance App history Startup Users Details Services
MName - PID Status User name CPU Memory (p... Description 2
5] System interrupts - Running SYSTEM | 0K Deferred procedure calls and interrupt s...
[=] taskhostw.exe 3832 Running Malware 00 0K Host Process for Windows Tasks
17 Taskmgr.exe 3676 Running Malware 00 4,392 K Task Manager
[EE] VGAuthService.exe 1304 Running SYSTEM 00 0K VMware Guest Authentication Service
[#5] vm3dservice.exe 1124 Running SYSTEM 00 0K VMware SVGA Helper Service
[#E] vm3dservice.exe 2132 Running SYSTEM 00 0K VMware SVGA Helper Service
,‘ﬁ\rmtoolsd.exe 6280 Running Malware 00 704 K VMware Toels Core Service
i vmtoolsd.exe 1884 Running SYSTEM 00 2,072K VMware Tools Core Service
[wininit.exe 476 Running SYSTEM 00 0K Windows Start-Up Application
(B | winlogon.exe 576 Running SYSTEM 00 0K Windows Logon Application
ﬁ\’\"mIPNSE.E}(E 3140 Running MNETWORK SERVICE 00 3,204 K WMI Provider Host
v
Fewer details End task

Moreover, winlogon.exe manages various other user-interface features, including the secure attention
sequence, loading user profiles, and locking the computer. The process also plays a crucial role in
implementing various security protocols during a user's session.

Managing the winlogon.exe Process

Normally, there should be one instance of the winlogon.exe process running in the background of your
system. You can see it in your Task Manager, but it should not typically use a significant amount of

system resources.

If you see multiple instances of winlogon.exe, or if the process is consuming a high amount of system
resources, it could indicate a problem, such as a system error or a malware infection.

Winlogon.exe High CPU or Disk Usage

Under normal circumstances, winlogon.exe should not consume high CPU or disk resources. If you
notice unusual resource usage associated with winlogon.exe, it could be due to:

1. System errors: These could cause winlogon.exe to consume more resources than usual.
2. Malware: Some forms of malware can mimic the winlogon.exe process to evade detection.

42

ThinkCyber | NX Malware Analysis

Is winlogon.exe Infected?

If you notice suspicious activity from winlogon.exe, it might indicate a malware infection. You can verify
the legitimacy of winlogon.exe by checking its digital signature.

Services.exe
Services.exe is another critical system process in the Windows operating system, akin to winlogon.exe,
csrss.exe, and certutil.exe. This process manages the operation of starting and ending system services.

The Role of services.exe

Services.exe, also known as the Service Control Manager, is responsible for handling system services
in the Windows operating system. This process starts, stops, and interacts with system service
processes and is a crucial component in the management of network connections, event logging, and
other system settings.

1% Task Manager = O X
File Options View
Processes Performance App history Startup Users Details Services
MName - PID Status User name CPU Memory (p... Description l
¢ Searchindexer.exe 5408 Running SYSTEM 00 144K Microsoft Windows Search Indexer
[5] SearchUl.exe 4324 Suspended Malware 00 0K Search and Cortana application
[8] SecurityHealthServic... 928 Running SYSTEM 0o 0K Windows Security Health Service
(| services.exe 616 Running SYSTEM 00 576 K Services and Controller app
[85]ShellExperienceHost.... 4172 Suspended Malware 00 0K Windows Shell Experience Host
[sihost.exe 3732 Running Malware 00 72K Shell Infrastructure Host
[55]smss.exe 288 Running SYSTEM 00 0K Windows Session Manager
= spoolsv.exe 1660 Running SYSTEM 00 0K Spooler SubSystem App
[85] svchost.exe 7072 Running SYSTEM 00 0K Host Process for Windows Services
[85] svchost.exe 728 Running SYSTEM 0o 500K Host Process for Windows Services
[svchost.exe 852 Running NETWORK SERVICE 00 1,040 K Host Process for Windows Services
Wl svrhnst.exe 1Mma Runninn SYSTEM o ARSR K Hnst Process for Windowes Services hé
Fewer details End task

Given its critical role, the services.exe process starts when the system boots and runs in the
background until the system is shut down.

Managing the services.exe Process
Under normal circumstances, the services.exe process operates quietly in the background, consuming
only a small fraction of the system's resources. You can see it running in your Task Manager, but it

should not be consuming high CPU or memory resources.

If you notice multiple instances of services.exe, or if the process is consuming a significant amount of
system resources, it could indicate an issue such as a system error or a malware infection.

43

ThinkCyber | NX Malware Analysis

Services.exe High CPU or Disk Usage

High CPU or disk usage by services.exe is not common and could indicate an issue. The following factors
might be responsible:

1. System or application errors: These might cause services.exe to consume more resources than
usual.
2. Malware: Some malware can masquerade as services.exe to avoid detection.

Is services.exe Infected?

If you observe suspicious behavior from services.exe, it could be a sign of malware. To verify the
legitimacy of services.exe, check its digital signature. The genuine services.exe file should be signed by
Microsoft.

Lsass.exe
Much like other critical system processes such as services.exe, winlogon.exe, and csrss.exe, Isass.exe
plays an integral role in the Windows operating system.

The Role of Isass.exe
Lsass stands for Local Security Authority Subsystem Service. It's a critical system process that verifies

the validity of user logins to your PC or server. This process enforces the security policy on the system,
verifies user logins, and handles password changes.

1%l Task Manager - O X
File Options View
Processes Performance App history Startup Users Details Services
MName PID Status User name CPU Memory (p... Description (3
explorer.exe 3364 Running Malware 00 4684 K Windows Explorer
[55] fontdrvhost.exe 743 Running UMFD-0 o0 0K Usermode Font Driver Host
[55] fontdrvhost.exe 756 Running UMFD-1 0o 0K Usermode Font Driver Host
(=] |sass.exe 628 Running SYSTEM 00 1,040 K Local Security Authority Process :
(s msdtc.exe 2182 Running MNETWORK SERVICE 00 0K Microsoft Distributed Transaction Coor...
B regedit.exe 1732 Running Malware 00 52K Registry Editor
[5] RuntimeBroker.exe 3468 Running Malware 00 672K Runtime Broker
[RuntimeBroker.exe 4532 Running Malware 00 308K Runtime Broker
[55 RuntimeBroker.exe 4640 Running Malware oo 360K Runtime Broker
¢ SearchFilterHost.exe 8404 Running SYSTEM 00 176 K Microsoft Windows Search Filter Host
¢ Searchindexer.exe 5408 Running SYSTEM 00 1444 K Microsoft Windows Search Indexer
a= SearchProtocolHost.... f36kd Runnina SYSTEM (1)) 4K Microsoft Windows Search Protocol Host ™
Fewer details End task

Lsass.exe generates the process responsible for authenticating users for the Winlogon service. It is
essential to the secure and stable operation of the system, and terminating this process may lead to a
system shutdown or, at the very least, a loss of certain security functions.

44

ThinkCyber | NX Malware Analysis

Managing the Isass.exe Process

Usually, Isass.exe operates quietly in the background, requiring no user intervention. However, if you
notice an excessive use of system resources associated with Isass.exe, it might be indicative of an issue.

Lsass.exe High CPU or Disk Usage

High CPU or disk usage by Isass.exe isn't common and could indicate a problem. The following factors
might be responsible:

1. System or application errors: These could cause Isass.exe to consume more resources than
usual.
2. Malware: Some forms of malware can mimic the Isass.exe process to evade detection.

Is Lsass.exe Infected?

If you observe suspicious activity from Isass.exe, it could be a sign of malware. You can verify the
legitimacy of Isass.exe by checking its digital signature. The genuine Isass.exe file should be signed by
Microsoft.

Wscript.exe
The wscript.exe process, like its counterparts such as Isass.exe, services.exe, and winlogon.exe, plays
an essential role in the Windows operating system.

The Role of wscript.exe

Wscript.exe stands for Windows Script Host, and it's the process that allows the Windows operating
system to execute scripts. These scripts could be in various formats such as Visual Basic Scripting (.VBS),
JavaScript (.JS), or other scripting languages. The main function of wscript.exe is to offer scripting
capabilities similar to batch files, but with a wider range of supported features.

Managing the wscript.exe Process

Typically, the wscript.exe process should not be continuously running in the background unless a script
or application is currently utilizing it. If you observe the wscript.exe process running without a known
script or application, or if it's consuming a significant amount of system resources, it could suggest a
problem such as a malfunctioning script or a malware infection.

Wscript.exe High CPU or Disk Usage

High CPU or disk usage by wscript.exe is usually an anomaly and could signify an issue. These are the
possible causes:

1. Malfunctioning scripts: Scripts that are poorly written or have errors can cause wscript.exe to
consume more resources than usual.

2. Malware: Certain types of malware can disguise themselves as wscript.exe to avoid detection
by antivirus software.

45

ThinkCyber | NX Malware Analysis

Is Wscript.exe Infected?

If you notice suspicious activity associated with wscript.exe, it could indicate a malware infection. You
can verify the legitimacy of wscript.exe by checking its digital signature. The genuine wscript.exe file
should be signed by Microsoft.

Wuauclt.exe
The wuauclt.exe process, similar to other critical processes such as wscript.exe, Isass.exe, and
services.exe, is an integral part of the Windows operating system.

The Role of wuauclt.exe

The wuauclt.exe process is associated with the Windows Update AutoUpdate Client. The name
"wuauclt" stands for "Windows Update Auto Update Client". As the name suggests, this process is
primarily responsible for initiating automatic updates for Windows. When the operating system checks
for updates or installs them, it's the wuauclt.exe process that is at work.

Managing the wuauclt.exe Process

Under normal circumstances, wuauclt.exe operates silently in the background, using minimal system
resources. It's usually dormant and only becomes active when Windows is checking for or installing
updates. If you notice multiple instances of wuauclt.exe, or if the process is consuming a significant
amount of system resources, it could indicate a problem, such as a system error or a malware infection.

Wuauclt.exe High CPU or Disk Usage

High CPU or disk usage by wuauclt.exe isn't common and could signify a problem. The following factors
might be responsible:

1. Update Issues: If the Windows update process encounters an error, wuauclt.exe might
consume more resources than usual.
2. Malware: Some forms of malware can disguise themselves as wuauclt.exe to avoid detection.
Is Wuauclt.exe Infected?
If you observe suspicious activity from wuauclt.exe, it could be a sign of malware. You can verify the

legitimacy of wuauclt.exe by checking its digital signature. The genuine wuauclt.exe file should be
signed by Microsoft.

MsMpEng.exe
Like other essential system processes such as wuauclt.exe, wscript.exe, and Isass.exe, MsMpEng.exe
plays a critical role in the Windows operating system.

The Role of MsMpEng.exe

MsMpEng.exe stands for Microsoft Malware Protection Engine. This process is associated with
Windows Defender, the built-in antivirus and antimalware program in Windows. Its primary function

46

ThinkCyber | NX Malware Analysis

1°xl Task Manager — O >
File Options View

Processes Performance App history Startup Users Details Services

Name PID Status User name CPU Memory (p... Description 2
;\amsdtc.exe 2430 Running METWORK... 00 2164 K Microsoft Distributed Tr...
ﬁ!msiexec.ae 6360 Running SYSTEM 00 3,224 K Windows® installer
{[0| MsMpEng.exe 2836 Running SYSTEM 00 95,984 K Antimalware Service Exe... :
[85] NisSrv.exe 4720 Running LOCAL SE... 00 2,264 K Microsoft Metwork Realt...

& Onelrive.exe G064 Running WINCL 00 19,096 K Microsoft OneDrive
[#5|OneDriveStandalone... 8704 Running WINCL 00 1,920K Standalone Updater
[#5|RuntimeBroker.exe 5824 Running WINCL 00 3,288 K Runtime Broker
[#5|RuntimeBroker.exe 6156 Running WINCL 00 4112 K Runtime Broker

[2Z| RuntimeBroker.exe 7696 Running WINCL 00 4652 K Runtime Broker ”

Fewer details End task

is to scan files for malware when accessed, monitor system for malicious activity, and perform routine
system scans.

Managing the MsMpEng.exe Process

Under standard operating conditions, MsMpEng.exe runs in the background, consuming minimal
system resources. Its CPU or disk usage might spike when performing a system scan or when
downloading new antivirus definitions, but these instances should be temporary.

MsMpEng.exe High CPU or Disk Usage

High CPU or disk usage by MsMpEng.exe could signify a temporary condition or an issue. Potential
causes include:

1. Scanning activity: When Windows Defender scans the system, MsMpEng.exe usage will
increase. If your system is sluggish during these times, consider scheduling scans for when you
are not actively using the computer.

2. Conflicts with other software: Conflicts between Windows Defender and other antivirus
software installed on your system might cause high resource usage.

Is MsMpEng.exe Infected?
You can verify the legitimacy of MsMpEng.exe by checking its digital signature. The genuine
MsMpEng.exe file should be signed by Microsoft Corporation. You can view this information in the Task

Manager under the Details tab by right-clicking on MsMpEng.exe, selecting Properties, and then
navigating to the Digital Signatures tab.

47

ThinkCyber | NX Malware Analysis

Vssadmin.exe
Vssadmin.exe, like other critical system processes such as MsMpEng.exe, wuauclt.exe, and wscript.exe,
plays a crucial role in the Windows operating system.

The Role of vssadmin.exe

Vssadmin.exe, or Volume Shadow Copy Service Admin, is a command-line tool in Windows that allows
administrators to manage and configure the Volume Shadow Copy Service (VSS). This service is
responsible for creating and managing ‘shadow copies’, which are backups of files or volumes of data
at a specific point in time. These shadow copies can be used to restore data in the event of accidental
deletion, corruption, or other forms of data loss.

Managing the vssadmin.exe Process

In general, vssadmin.exe should not be running unless it's actively being used to manage the Volume
Shadow Copy Service. It is a command-line tool, which means it only runs when explicitly called by the
user or a system process. If you notice vssadmin.exe running without a known cause, or if it's
consuming a large amount of system resources, it could indicate a problem.

Vssadmin.exe High CPU or Disk Usage

High CPU or disk usage by vssadmin.exe isn't common and could indicate a problem. Potential causes
include:

1. Misconfiguration: If the Volume Shadow Copy Service is misconfigured, it could cause
vssadmin.exe to consume more resources than usual.
2. Malware: Some malware can disguise themselves as vssadmin.exe to avoid detection.

Is Vssadmin.exe Infected?

If you notice suspicious activity associated with vssadmin.exe, it could be a sign of malware. You can
verify the legitimacy of vssadmin.exe by checking its digital signature.

Smss.exe
The smss.exe process, like other key system processes such as vssadmin.exe, MsMpEng.exe, and
wuauclt.exe, is an integral component of the Windows operating system.

The Role of smss.exe

Smss.exe stands for Session Manager Subsystem. It is a critical system process that runs every time
Windows starts up. This process is responsible for managing user sessions. It sets up the system
environment variables, and it is also responsible for launching the Winlogon and Csrss.exe processes
during the startup procedure. Additionally, it helps manage and delete user profiles during log off or
system shutdown.

Managing the smss.exe Process

In normal operation, smss.exe should be running in the background and using minimal system
resources. It is typically invoked at startup and doesn’t need user interaction. If you notice multiple

48

ThinkCyber | NX Malware Analysis

instances of smss.exe, or if the process is consuming significant system resources, it could indicate a
problem, such as a system error or a malware infection.

1% Task Manager - O *
File Options View
Processes Performance App history Startup Users Details Services
MName ’ PID Status User name CPU Memeory (p... Description &
[#] svchost.exe 1996 Running SYSTEM 00 1,492 K Host Process for Windows Services
[svchost.exe 3748 Running Malware 00 0K Host Process for Windows Services
o= spoolsv.exe 1660 Running SYSTEM 00 0K Spooler SubSystern App
{[1-| smss.exe 288 Running SYSTEM 00 0K Windows Session Manager
[sihost.exe 3732 Running Malware 00 0K Shell Infrastructure Host
[#5] ShellExperienceHost.... 4172 Suspended Malware 00 0K Windows Shell Experience Host
[services.exe 616 Running SYSTEM 00 1,164 K Services and Controller app
[#5] SecurityHealthServic... 928 Running SYSTEM 00 1,000 K Windows Security Health Service
[55] SearchUlexe 4324 Suspended Malware 00 0K Search and Cortana application
¢ Searchindexer.exe 5408 Running SYSTEM 00 532K Microsoft Windows Search Indexer
[RuntimeBroker.exe 4532 Running Malware 00 0K Runtime Broker
[8El RuntimeRroker.sxe ARAN Runninn Malware nn MK Runtime Broker d
Fewer details End task

Smss.exe High CPU or Disk Usage

High CPU or disk usage by smss.exe is uncommon and could signify a problem. The following factors
might be responsible:

1. System Issues: If there are problems with user sessions or system environment variables,
smss.exe might consume more resources than usual.
2. Malware: Some forms of malware can disguise themselves as smss.exe to avoid detection.

Is Smss.exe Infected?

You can verify the legitimacy of smss.exe by checking its digital signature. The genuine smss.exe file
should be signed by Microsoft.

Mshta.exe
Mshta.exe, much like other essential system processes such as the 'System' process, smss.exe, and
vssadmin.exe, is a core component of the Windows operating system.

The Role of mshta.exe

Mshta.exe, short for Microsoft HTML Application Host, is a utility that executes Microsoft HTML
Applications (HTA). HTA files are HTML files that run as fully trusted applications without the usual
constraints of the internet browser. These HTAs are commonly used for administrative scripts in the
Windows environment and system configuration tasks.

Managing the mshta.exe Process
Mshta.exe is typically invoked when an HTA file needs to be executed and does not run continuously.
If you notice mshta.exe running without a known cause, it could indicate a problem, such as a system

error or a malware infection.

49

ThinkCyber | NX Malware Analysis

Mshta.exe High CPU or Disk Usage

High CPU or disk usage by mshta.exe is unusual and could signify a problem. Potential causes may
include:

1. Faulty HTA Application: If an HTA application is poorly written or contains an error, mshta.exe
may consume more resources than usual.
2. Malware: Some forms of malware can masquerade as mshta.exe to avoid detection.

Is Mshta.exe Infected?

If you observe suspicious activity associated with mshta.exe, it could be a sign of malware. You can
verify the legitimacy of mshta.exe by checking its digital signature. The genuine mshta.exe file should
be signed by Microsoft.

System
The 'System' process, along with other key system processes such as smss.exe, vssadmin.exe, and
MsMpEng.exe, is a central component of the Windows operating system.

The Role of 'System' Process

The ‘System’ process, also known as NT Kernel & System, is a critical part of the Windows operating
system. It is responsible for handling various system-level operations, including managing hardware
interrupts and the execution of kernel and driver code. It also controls system threads and some
system functions such as the page swap file’s input/output.

Managing the ‘System’ Process

The 'System' process is always running when your Windows system is active. It typically consumes a
small amount of CPU, but its memory usage can be relatively high because it handles many core tasks
related to the operation of your computer. The 'System' process is integral to the operation of your
computer, so it should never be ended.

'System' Process High CPU or Disk Usage
High CPU or disk usage by the 'System' process can indicate a problem. Some potential causes include:

1. Hardware Issues: If a hardware component or driver is failing or incompatible, it may cause
the 'System' process to consume more resources.

2. Software Conflicts: Some software or system configurations may conflict with the 'System'
process, leading to increased resource usage.

Is the ‘System’ Process Infected?

The 'System' process is a core part of the Windows operating system and is unlikely to be directly
infected by malware. However, malicious software can affect its operation or mimic its name to avoid
detection. If you see a 'System' process using a substantial amount of resources, it might be worth
investigating. Keep in mind, however, that the 'System' process cannot be ended and it's not possible
to view its file location or properties like other processes.

50

ThinkCyber | NX Malware Analysis

Basic Dynamic Malware Analysis

Dynamic malware analysis involves executing malware samples in a controlled environment and
observing their actions, interactions, and effects on a system. Basic dynamic malware analysis focuses
on gathering essential information about the malware's behavior, such as its communication channels,
file modifications, and system-level activities.

Introduction to Dynamic Malware Analysis

Dynamic malware analysis is a method used to examine and evaluate the behavior of malware while
it's running in a system. This analysis is performed in a controlled environment, often referred to as a
sandbox, to prevent the malware from causing actual harm. This technique is an essential part of
behavioral analysis, allowing cybersecurity professionals to understand what a piece of malware does
when it is executed and how it interacts with system processes, files, and the network.

Overview of Dynamic Analysis

Dynamic analysis focuses on the actual behavior of malware. Unlike static analysis, which examines
malware's code without executing it, dynamic analysis observes the actions malware takes when run.
This can include file modifications, registry changes, network connections, and other system
interactions.

Step 1: Setting up a Controlled Environment

To perform dynamic malware analysis, you need a controlled environment where you can execute the
malware safely. This typically involves setting up a virtual machine (VM) or a sandboxed environment.
The virtual machine should be isolated from the host system to prevent any potential damage or
infection. You can use virtualization software such as VMware or VirtualBox to create and configure
the virtual machine.

Step 2: Acquiring and Preparing the Malware Sample

Obtain a copy of the malware sample you wish to analyze. It could be a file, an email attachment, or a
URL that triggers a download. Ensure that you take appropriate precautions while handling the
malware sample to prevent accidental execution or spread.

Step 3: Monitoring System Activities

Before executing the malware, set up monitoring tools to capture and record its behavior during
execution. This includes system-level activities such as file system modifications, network
communications, registry changes, and process and thread creation. Tools like Process Monitor,
Wireshark, and Regshot are commonly used for this purpose.

Step 4: Executing the Malware Sample

Launch the malware sample in the controlled environment. It is important to note that malware
samples can be highly obfuscated or self-protecting. In some cases, they may attempt to detect the
presence of a virtual machine or sandbox environment to evade analysis. To counter these techniques,
you may employ anti-anti-analysis techniques or use specialized analysis platforms.

Step 5: Monitoring and Capturing Malware Behavior

Observe the malware's behavior in real-time and allow it to execute its intended actions. Monitor the
system activities and interactions with the malware. Capture screenshots or record a video of the
malware's execution, as it may exhibit visual behaviors or display messages that are crucial for analysis.

51

ThinkCyber | NX Malware Analysis

Step 6: Analyzing Captured Data

Once the malware execution is complete or you decide to terminate it, analyze the captured data from
the monitoring tools. Examine the captured network traffic, file system changes, registry modifications,
and any other relevant information. Identify any connections made to external IP addresses, URLs
visited, files created or modified, and changes to system settings. This analysis will help in
understanding the purpose and capabilities of the malware.

Step 7: Extracting Indicators of Compromise (10Cs)

From the analysis, extract any Indicators of Compromise (I0Cs) that can be used for detection and
prevention. This includes IP addresses, URLs, domain names, file names, and registry keys associated
with the malware. I0Cs can be used to create signatures for antivirus software or to block malicious
communications at the network level.

Step 8: Documenting Findings

Finally, document your findings and observations from the dynamic malware analysis process. This
documentation should include a detailed report of the malware's behavior, captured data, 10Cs, and
any relevant screenshots or videos.

Dynamic Analysis Techniques
Several techniques are widely used in dynamic malware analysis, including:

= System Monitoring
System monitoring involves observing the changes a piece of malware makes to a system when
executed. This could include changes to files, system calls, or alterations in the registry.

= Network Monitoring
Network monitoring involves examining the network traffic generated by the malware. This
can help identify any command-and-control (C&C) servers the malware communicates with,
or other malicious network activities.

= Memory Analysis
Memory analysis focuses on the changes that occur in the system's memory when malware is
run. It can help identify unpacked versions of malware and other artifacts that are not visible
on the disk.

52

ThinkCyber | NX Malware Analysis

Sandbox Analysis

Setting up a sandbox environment is an essential step in conducting secure and controlled analysis of
potentially malicious software, such as malware or suspicious files. A sandbox provides an isolated and
controlled environment where you can safely execute and observe the behavior of these files without
risking damage to your production systems. This section outlines the key steps involved in setting up a
sandbox environment.

Choose a Virtualization Platform

Select a virtualization platform that best suits your needs. Popular choices include VMware
Workstation, VirtualBox, or Microsoft Hyper-V. These platforms allow you to create and manage virtual
machines (VMs) within your existing operating system.

Install the Hypervisor

Install the selected virtualization software on your host machine. This software acts as the hypervisor,
enabling you to create and manage virtual machines.

Create a New Virtual Machine

Using the virtualization software, create a new VM that will serve as your sandbox environment.
Specify the desired operating system and allocate appropriate resources such as CPU, memory, and
storage space. It is recommended to choose a lightweight and easily restorable operating system for
the sandbox.

Install the Operating System

Install the chosen operating system within the newly created virtual machine. Ensure that you follow
the installation process as you would on a physical machine, including configuring network settings
and user accounts.

Configure Networking

To enable network connectivity for the sandbox environment, configure the network settings of the
virtual machine. You can choose from various network modes such as bridged, NAT (Network Address
Translation), or host-only depending on your requirements. Bridged mode allows the sandbox
environment to have direct access to the network, while NAT and host-only modes provide isolated
network environments.

Install Security Software

To enhance the security of your sandbox environment, install appropriate security software such as
antivirus or endpoint protection tools. Ensure that these tools are regularly updated to detect and
prevent any potential threats within the sandbox.

Disable Auto-Run and Auto-Update Features

Disable any auto-run or auto-update features within the sandbox environment. This prevents

automatic execution or unintended software updates, allowing you to control the execution of files
and maintain the integrity of the sandbox environment.

53

ThinkCyber | NX Malware Analysis

Take Snapshots or Backups

Before executing any potentially malicious files, take a snapshot or backup of the clean sandbox
environment. This enables you to revert back to a known clean state if the analysis causes any
unintended consequences or compromises the integrity of the sandbox.

Implement Isolation

Ensure that the sandbox environment is isolated from your production systems and network. This
prevents any accidental spread of malware or unauthorized access to sensitive information. Use
separate network segments or VLANSs to isolate the sandbox environment.

Execute and Monitor Files

Once the sandbox environment is set up, you can begin executing suspicious files or malware samples
within it. Monitor the behavior of the files using various monitoring tools such as process monitors,
network analyzers, or behavior analysis tools. Capture and analyze any activities or behaviors that may
indicate malicious intent.

Analysis and Reporting
After observing and capturing the behavior of the files, analyze the data collected during the sandbox
execution. ldentify any malicious or suspicious activities, document the observed behaviors, and

generate a report detailing the findings. This report will serve as a valuable reference for further
analysis or incident response.

54

ThinkCyber | NX Malware Analysis

Analyzing Process Behavior

Process behavior analysis involves studying the activities of individual processes in a system, such as
file operations, registry modifications, and network communications. Two popular tools for process
behavior analysis are Process Monitor and Process Explorer, both from Sysinternals.

Process Monitor

Process Monitor is an advanced monitoring tool for Windows that shows real-time file system, Registry,
and process/thread activity. This tool combines the features of two older Sysinternals utilities, Filemon
and Regmon, and adds a rich set of features including powerful filtering, comprehensive event
properties, and more.

W Process Monitor - Sysinternals: www sysinternals.com - [m| *
File Edit Ewent Filter Tools Options Help
T | |F 7 o [te]
FEILNRIIYAO & # L BB
Time ... Process Mame PID Operation Path Result Detail ~
i 3963 WRegQuewK&y HELM SUCCESS Query: Handle Tags, Handle Tags: (x0
3963 WRegOpenKe).I HELM\Software\Microsoft \Input \Settings SUCCESS Desired Access: Read
3968 M RegQueryKey HKCU SUCCESS Query: Handle Tags, HandleTags: (k0
3968 Hif RegOpenKey HKCU'\Software\Microsoft\Input'\Settings NAME MNOT FOUND Desired Access: Read
3968 Hif RegQueryKey — HKLM\SOFTWARE\Microsoft\Input\Settings SUCCESS Query: Handle Tags, HandleTags: (k0
3968 M RegOpenKey HKLM\SOFTWARE'\Microsoft\Input\Settings‘proc_1%oc_0408\... SUCCESS Desired Access: Query Value
3968 [RegQuenValue HKLM\SOFTWARE \Microsoft\Input'Settings\proc_1\oc_0408"... SUCCESS Type: REG_DWORD, Length: 4, Data: 35
3968 [ReqCloseKey HKLM\SOFTWARE \Microsoft\Input'\Settings\proc_1\oc_0408"... SUCCESS
3568 EfF{egClose}'(e).I HELM\SOFTWARE Microsoft \Input " Settings SUCCESS
3568 EfRegOueryKey HKLM SUCCESS Query: Handle Tags, HandleTags: (x0
3568 wF{egOpenKe).I HELM"\SoftwareMicrosoft \nput Settings SUCCESS Desired Access: Read
3568 wRegOuewKey HKCU SUCCESS Query: Handle Tags. HandleTags: (x0
3568 wRegOpenKey HKC U\ Software Microsoft \nput ' Settings NAME NOT FOUMND Desired Access: Read
3568 wﬂegOuewKey HKLM\SOFTWARE Microsoft \Input " Settings SUCCESS Query: Handle Tags, HandleTags: (k0
3968 [ReaOpenkey HKLM\SOFTWARE" Micrasoft \InputSettings‘proc_14oc_0405%... SUCCESS Desired Access: CQuery Value hd
>
Showing 123,817 of 233,561 events (33%) Backed by virtual memory

When you're analyzing malware, there are several things you should look for using Process Monitor:

1. Process Creation: Look for new processes being started. In many cases, malware will launch
new processes or inject code into existing processes.

¥ Process Monitor - Sysinternals: www.sysinternals.com — O *

File Edit Event Filter Tools Options Help

BELNRNIYAO & # L /8 ED oW

Time ... Process Name PID' Operation Path Result Detail A
.. 'ra Explorer EXE 3420 @Y RegCloseKey HKLM*System CumentCantrol... SUCCESS

.. 'ra Explorer EXE 3420 B RegOpenkKey HKLM*SYSTEM \CurentCont... REPARSE Desired Access: Query Value

.. 'r1 Explorer EXE 3420 B RegOpenkKey HKLM*System CumertControl ... MAME MOT FOUND Desired Access: Query Value

‘r1 Explorer EXE 420 2 Process Create C\Windows'system32'emd e SUCCESS PID: 1568, Command line: "C:\Windows'system32'cmd exe"
Process Start SUCCESS Parent PID: 3420, Command line: "C:\Windows"system32'cmd.exe” , Curg
Thread Create SUCCESS Thread ID: 2648

:02:... 'py Explorer EXE RegOpenkey HKCUMSoftware'\Microsoft\W ... SUCCESS Desired Access: Query Value

-02:... 'rp Explorer EXE RegQuenyValue HKCLUSoftware\Microsoft\W ... SUCCESS Type: REG_SZ, Length: 118, Data: C:\Users'\Malware AppData*Local 'Mic

-02:... 'rp Explorer EXE RegClose Key HKC LM Software \Microsoft\W... SUCCESS

:02:... ' Explorer EXE RegOpenKey HKC LM Software \Microsoft\W... SUCCESS Desired Access: Query Value

:02:... ' Explorer EXE ReglueryValue HKCL"Software'Microsoft\\W ... NAME NOT FOUND Length: 16

-02:... ' Explorer EXE 3420 B RegCloseKey HKCUMSoftware'\Microsoft\W... SUCCESS A
< >
Showing 92,232 of 187,940 events (49%) Backed by virtual memory

2. File System Activity: Examine read, write, and delete operations. Malware often creates,
modifies, or deletes files. You might also see it reading files that contain sensitive information.

3. Registry Activity: Monitor for registry reads and writes. Many types of malware will make

changes to the registry to ensure they are launched at system startup, or to alter the behavior
of the system in some way.

55

ThinkCyber | NX Malware Analysis

4. Network Activity: Although Process Monitor is not designed to monitor network activity,
network-related events can indirectly appear. For example, you might see a process trying to
modify the system's proxy settings or firewall rules.

W Process Monitor - Sysinternals: www.sysinternals.com — O *

File Edit Ewent Filter Tools Options Help

EEILNRWYHAO & # BB D

Time ... Process Name PID Operation Path Result Detail A

LI TCF Send 192.168.1.187:50085 -> 34.120.208.123:443 SUCCESS Length: 3007, startime: 500774, endtime: !
LI TCP Receive 152.168.1.187:50085 -> 34120 208.123.443 SUCCESS Length: 686, seqgnum: 0, connid: 0
TCP Send 192.168.1.187:50085 -> 34.120.208.123:443 SUCCESS Length: 351, startime: 500800, endtime:

... W pingsender exe 6844
pingsender exe

12:10.. pingsender exe 6344 FTCP Send 152.168.1.187:50085 -»> 34.120.208.123:443 SUCCESS Length: 16384, startime: 500800, endtime:
12:10.. pingsender exe 6344 J'TCP Send 152.168.1.187:50085 -> 34.120.208.123.443 SUCCESS Length: 8259, startime: 500800, endtime: !
12:10:... “W- pingsender.exe 6344 J'TCP Receive 152.168.1.187:50085 -> 34.120.208.123.443 SUCCESS Length: 686, segnum: 0, connid: 0
12:10.. pingsender exe 6844 J'TCP Disconnect 192.168.1.187:50085 -> 34.120.208.123:443 SUCCESS Length: 0. segnum: 0, connid: 0

:10:... - svchost.exe 1896 &' UDF Receive 235.255.255.250:1500 -> 192.168.1.172:60530 SUCCESS Length: 174, segnum: 0, connid: 0
12:10:... ‘W-svchost.exe 1896 &' UDF Receive 235.255.255.250:1500 -> 192.168.1.172:60530 SUCCESS Length: 174, segnum: 0, connid: 0
12:10:... "W svchost exe 1896 ' UDP Receive 239.255.255.250:1900 -> 192.168.1.172:60930 SUCCESS Length: 174, segnum: 0, connid: 0
12:10:... ‘W-svchost.exe 1896 ' UDF Receive 235.255.255.250:1500 -> 192.168.1.172:60530 SUCCESS Length: 174, segnum: 0, connid: 0

v

< >
Showing 534 of 117,827 events (0.45%) Backed by virtual memory

5. DLL Loading: Check which DLLs a process is loading. This can give you clues about what the
process is doing. Some types of malware will load DLLs that are commonly used for malicious
purposes, or they may inject code into legitimate DLLs.

6. Parent-Child Process Relationships: Understand the relationship between processes. Malware
often uses legitimate processes to carry out malicious activities. If you see a legitimate process
with a child process that looks suspicious, that could be a sign of infection.

7. Error Codes: Look for failed operations. If you see a process that's repeatedly trying to perform
an operation and failing, that could be a sign that the malware is malfunctioning or that it's
trying to perform an action that's being blocked by a security tool.

8. Suspicious Patterns: For example, malware often performs actions in a loop, such as
continuously scanning the file system or registry, or repeatedly attempting to connect to a
command-and-control server.

9. Anomalous Behavior: Any behavior that is not typical for the process. For example, if you see

a process that usually doesn't have network activity suddenly sending data to a remote server,
it could be a sign of a malware infection.

56

ThinkCyber | NX

Best Practices

1. Filtering for Effective Results

ProcMon displays a massive amount of data, which can be overwhelming. To narrow down the output,

Malware Analysis

you should leverage its powerful filtering capabilities.

. . . f . .
e Use the filter tool (Ctrl+L) to specify the processes or operations you're interested in.
e Start with excluding known good processes, like System Idle Process and System, to minimize
noise.
e Use conditional filtering operators like is, is not, contains, etc. to fine-tune your filtering.
=
File Edit Event Filter Toale Ons ==
‘ = r @_ W Process Monitor Filter *
LJ C
Time Process Name Display entries matching these conditions: A
857 flctimon exs Process Mame ~||is || rundll32.exe ~ | then Include v |andleTags, HandleTags: (x0
§:57:2... Hctfmon exe Bcoess: Notify
8572.. E ctfmon exe : 802,688, Length: 16.384, |/0 Fags: N
8:57:2.. @ctfmon exe Reset Add Remove 782,208, Length: 16,334, 1/0 Flags: Ne
857 #Hctfmon exe andleTags, Handle Tags: (0
8:57.2... $fctimon.exe - Pccess: Read
8:57:2... [ctfmon exe Colur.nn Relation Value Action ° andle Tags. HandleTags: 0x0
8:572... [ctfmon.exe J Process Name is rundll32.exe Include fccess: Read
8572 Pctimon exe € Process Name is Procmon exe Exclude andle Tags, Handle Tags: (x0
8 53 ctfmon.exe @ Process Name is Procexp exe Exclude _M“E“‘\s Query Value
8:57.2. cﬂmon Exe Process Name i Autoruns exe Exclude EG_OWORD, Length: 4, Data: 0
8:57:2... [ctfmon exe :
8572 #fctimon exe @ Process Name is Procmon64 exe Exclude
8:572.. [ctimon exe €9 Process Name is ProcexpBdexe Exclude andieTags, Handle Tags: (x0
:57:2... B ctfmon.exe @ Process Name 15 System Exclude Pccess: Read
:57:2... [ctfmon.exe € Dperation begins with IRP_MJ_ Exclude v | JandieTags. HandleTags: Gx0
8:57:2... ctimon.exe Pccess: Read
8:572... [@ctimon exe Cancel Agply andle Tags, Handle Tags: (0
857, [#ctfmon exe Access: Query Value
8:57:2. ctfmon exe — oo £G_DWORD., Length: 4, Data: 1
8:57.2. ctfmon exe 3356 [} ReaCloseKey HKLM\SOFTWARE\Microsoft Input\Settings‘\proc_1\oc_040... SUCCESS A
< >

Showing 363,397 of 495,446 events (73%)

2. Using the Highlight Function

Sometimes, rather than excluding data, you might want to highlight data of interest. ProcMon includes
a highlight feature (Ctrl+H) which allows you to set the same kind of conditions as a filter, but instead

Backed by virtual memaory

of excluding non-matching events, it will highlight matching events in the list.

¥ Process Monitor - Sysinternals: www.sysinternals.com

5.06:2. Dynamic02exe 2180 <% Load Image

2130

Dynamic02) & properties... Ctrl+P
9:06:2. DynamicDZ]
9062.. W Dynamicl2| B Stack.. Ctri+K
5:06:2.. W Dynamic02| [] Toggle Bookmark Ctrl+B
9:06:2... Dynamic02]
9062 Dynamic02 Jump To... Ctrl+)
5:062... Dynamic02| Search Online...
9.06:2.. Dynamic0Z]
9:06:2. Dynamic02] Include 'Dynamic2.exe’
gggg %mam\cgg Exclude ‘Dynamic02.exe’
- amic
9:06:2... Dynamic02 Highlight 'Dynamic02.exe’
906:2_ - Dynamic(2 Copy 'DynamicD2.exe’
9:06:2... - Dynamic02
9:06:2.. W Dynamic02 Edit Filter 'Dynamic02.exe’
9:06:2... - Dynamic02
<

Exclude Events Before
Exclude Events After

Include L4
Exclude L4

File Edit Event Filter Tools Options Help

rAa
EELIRNYAO|& F P
Time Process Name PID Operation Path
906:2.. W DynamicDZexe 2180 <2 Process Start
5:06:2.. W DynamicD2exe 2180 2 Thread Create
9:06:2. Dynamic02exe 2180 2Load Image C

Process Name
Image Path
Command Line
Company
Description
Version

Architecture

Path
Operation
Result
Event Class
Detail
Category

PID

TID
Parent PID
User
Session

Virtualized

|ﬁ@:@ﬁ°

icdynamic Dynamic02 exe

i

C02 EXE-D1B4BDB6 pf

iSet\Control\Session Manager'Se
\Control\Session ManageriSegm

Set\Control'Session Manager
“Contraol\Session Manager
\Control\Session Manager\Reso
WContraol\Session Manager

\Control hivelist
“Control hivelist
“WControl\hivelist'\Registr\Usar
Controlthivelist
dll
indl
g di
2dl

- O x
Result Detail @
SUCCESS Parert PID: 3680, Command line: "C:\Users
SUCCESS Thread ID: 5360
SUCCESS Image Baze: (13140000, Image Size: x3b(

SUCCESS

MAME NOT FOUND Desired Access: Generic Read, Disposttion: (
REPARSE Desired Access: Guery Value

.NAME NOT FOUND Desired Access: Query Value

REPARSE Desired Access: Query Value, Enumerate Su
SUCCESS Desired Access: Query Value, Enumerate Su
MNAME NOT FOUND Length: 24

SUCCESS

SUCCESS Desired Access: Execute/Traverse, Synchro
REPARSE Desired Access: Read

SUCCESS Desired Access: Read

SUCCESS Type: REG_SZ, Length: 168, Data: "Device
SUCCESS

SUCCESS Image Base: (xB5c70000, Image Size: Ix&1(
SUCCESS Image Base: (x55cd0000, Image Size: Ix76(

NAME NOT FOUND Desired Access: Read Attributes, Disposition
SUCCESS Image Base: (x2480000, Image Size: Oxaell ¥
>

57

ThinkCyber | NX Malware Analysis

3. Save Your Filter Presets
If you often find yourself using the same filters, save the filter presets to make your work easier.
Navigate to 'Filter' > 'Organize Filters..." Here, you can save, load, or manage your filter sets.

File Edit Event Filter Tools Options Help

EEUIBNYAO & F L /1BEI M

Time ... Process Name PID Op Result Detai "
8573, T DllHost exe 5208 [Orgenize Filters x SUCCESS Mame: \Windows’ System 32\t dl
857.3.. W DiHostexe 5228 &P SUCCESS Exit Status: 0, User Time: 0.0000000 second
8:57:3... T DilHost exe 5228 Hif R hS-1...SUCCESS Desired Access: All Access
8573 W DllHost exe 5228 R 51" NAVE NOT FOUND Length: 40
8573 W DiHost exe 5228 EFH ls-1. success
8:573.. W DilHostexe 5228 [, Delete SUCCESS
8573 W DllHost exe 5228 R SUCCESS
8573 W DilHost exe 5228 R SUCCESS
8573, W DiHostexe 5228 []R SUCCESS
8573, DiHostexe 5228 R import.. SUCCESS
8573 W DllHost exe 5228 R SUCCESS
8573 - DlHost exe 5228 FF{ SUCCESS
8:57:3... W DliHostexe 5228 .0l Export... SUCCESS
8573, W DiHostexe 5228 SR SUCCESS
8573 W DllHost exe 5228 R hag. SUCCESS
8573 W DiHost exe 5228 []R SUCCESS
8573, W DiHostexe 5228 R oK SUCCESS
8573 W DllHost exe 5228 R SUCCESS
8573 W DilHost exe 5228 R SUCCESS
8573, W DiHostexe 5228 [RegCloseKey HKCR“PackagedCom SUCCESS
v
€ >
Showing 3,301 of 495,533 events (0.66%) Backed by virtual memory

4. Use Boot Logging for Troubleshooting

Enable boot logging (Options > Enable Boot Logging) when troubleshooting startup problems. The
boot log records all activity during system startup, which can be crucial when diagnosing boot
problems.

¥ Process Monitor - Sysinternals: www.sysinternals.com - O X

File Edit Event Fier Tools Help
E|::D\)@|? Always on Top QCF@

Time .. Process Name pD g Fort- Resut Delail ~
8:57:3.. 8 DiHost.exe 5228 [Highlight Colers... SUCCESS Name \Windows"\System32\ritdl di

8:57. ‘B DilHost.exe 5228 <9 Theme 3 SUCCESS Exit Status: 0. User Time: 0.0000000 second
8:57: DliHost exe 5228 ices'bam\UserSettings\5-1... SUCCESS Desired Access: All Access

8:57: DllHost.exe 5228 Hy Configure Symbols... ices‘\bam'\UserSettings\5-1... NAME NOT FOUND Length: 40

8:57: DliHost exe 5228 ices'bam'\UserSettings\S-1... SUCCESS

8 DiHost zxe 523 [Select Columns... SUCCESS

8:57: DllHost.exe 5228 Eﬁ itrol\Nis\Serting\Versions SUCCESS

8:57:3 . T DlHost.exe 5228 g History Depth.. SUCCESS

W DllHost exe 5228 B Profiling Events... SUCCESS

W DiiHost exe 5228 SUCCESS
DiiHost exe 5228 Enable Boot Lagging s\ Software'\Microsoft SUCCESS
DiiHost exe 5228 3 SUCCESS
DilHost exe 5228 [Show Resolved Network Addresses Ctrl+N 00c.clb SUCCESS
DiiHost exe 5228 [SUCCESS
DiHost zxe 5228 R e et Fenqtiis s NT\CunentVersion\Imag... SUCCESS
: DllHost exe 5228 [Hex Process and Thread IDs SUCCESS
857.3 . T DiHost exe 5228 [MegTIOSEREy—HRCMSySEmCOTeNTComDISETControl Session Manager SUCCESS
857.3 . T DiHost exe 5228 [RegCloseKey HKCR"PackagedCom'Classindex SUCCESS
8573 . T DiHost exe 5228 [RegClossKey HKCU\Software'Classes SUCCESS
8573 . T DiHost exe 5228 [RegClossKey HKCR\PackagedCom SUCCESS
v
€ >

5. Take Advantage of Process Tree

The Process Tree (Ctrl+T) provides a visual representation of the processes and their child processes.
This is an easy way to see which processes were launched by which other processes, and it can be
crucial when analyzing malware or tracking down unwanted system behavior.

58

ThinkCyber | NX

Malware Analysis

¥ Process Tree

Process

il csrss exe (500)
=& winlogon exe (540)

1 dwm exe (344)
1/ Explorer EXE (3630)

@ firefor.exe (3220)
@ firfor.exe (380)
@ firefor.exe (5964)
@ frefox.exe (1028)
@ fircfox exe (4564)
@ firefor.exe (4850)
@ firfox.exe (2688)

<

Description:
Company:
Path:
Command:
User:

PID: 2180

Go To Event

[fortdrvhost.exe (756)

fortdrvhost exe (748)

Started:

[Timelines cover displayed events only

[] Only show processes still running at end of current trace

Desciption

Include Process

Process Monitor

Usermode Fant Diiver H..
Client Server Runtime Pr
Windows Logon Applca
Usermade Fant Driver H..
Desktop Window Mana
Windows Explorer
Vhhware Tools Care Ser..
Process Manitor

Include Subtree

Image Path Life Time Company

C\Windows system32artdry... | Microsch Comorat..
C\Windows system32\carss exe [Microsc Comorat
C\Windows\system32\winiogo .. [N Microsch Corporat
C\Windows system32farary... | Microsch Corporat..
€ \Windows system32\dw exe | Microsoh Corporat
C:\Windows'Explorer. EXE I Vicrasoh Comarat..
C:\Program Fles\VMyware\Viw... [VMware. Inc
€\ Toolks'\ProcessMonitor\Proc. . | Sysitemals

C:\Tools\ProcessMonitor'\Proc.
i

C:\Program Fies (x36)\Mozila .. [Mozilla Corporation
CA\Program Fles (:36)\Mazila F... | Mol Comarstion
C\Program Fies (c36):Mozila ... [Mozila Comoration
CA\Program Fies (:86)\Mazila F... N Mozl Comaration
C\Program Fies (36)\Mozila F .. | Mozila Comoration
C\Program Fies (36)Mozila ... M Mozila Comoration
CA\Program Fies (:86)\Mazila F... N Mozl Comaration
C\Program Fies (<36):Mozila ... [Mozila Comoration

Ca\Users\Malware\Desktop\basicdynamic\UynamicUz.exe
"Ci\Users\Malware\Desktop\basicdynamic\Dynamic02.exe"
DESKTOP-0D61403\Malware

5/18/2023 9:06:23 PM

Owner

Fort Diver Host'...
NT AUTHORITY
NT AUTHORITY
Fart Diver Host'...
Window Manager
DESKTOP-ODET...
DESKTOP-ODS1...
DESKTOP-ODS1
DESKTOP-0DS1

DESKTOP-OD61

DESKTOP-OD61... "C:\Program Files (x86)\Mozila Firefoxfirefox &
DESKTOP-OD61... "C:\Program Files (x86)\Mozila Firefoxfirsfox &;
DESKTOP-OD61... "C:\Program Files (x86)\Mozila Firefoxfirefox &
DESKTOP-0OD61... "C:\Program Files (86)\Mozila Firefoxfirefox &;
DESKTOP-OD61... "C:\Program Files (x86)\Mozila Firefox firsfox e:
DESKTOP-OD61... "C:\Program Files (x86)\Mozilla Firefoxfirsfox
DESKTOP-OD61... "C:\Program Files (<B6)\Mozila Firefoxfirsfox &:

Command ~
“fontdrvhost exe”

“SystemPoot %\system32\osrss exe ObjectDire
winlogon exe

fontdrvhost.cxe”

“dum exe’”

C:\Wiindows'\Explorer EXE

“C:\Program Files\VMware\WMware Tools\wmt:

"C:\Tools\PracessMonitor'.Procmon64 exe™

A\Tools\ProcessMonitor\Procmon64.ex

‘C:\Program Files (x86]\Mozilla Firefox firefox e

>

6. Save and Export Logs

Save the logs in PML format for detailed analysis and revisit. For sharing or using with other tools, you

might want to export them to CSV or XML formats.

PML (Process Monitor Log file)

PML is a proprietary format used by Process Monitor itself. The benefit of saving a log in PML format
is that it retains all information related to each event in the captured data. You can then reopen this
file in Process Monitor for further review, applying filters, etc. This is typically the most complete way
to save your capture.

Process Monitor -

Edit Event

Process Name

.. DynamicQ2.exe
HiDynamic02 exe

Showing 373 of 479,180 events (0.077%)

Filter

Tools

Options

om

Help

PID Opef
A

OB ‘ Y E Save To File

Events to save:

O All events
(@) Events displayed using current filter

[Alse include profiling events
O Highlighted events

Format:

@® Native Process Monitor Format (PML)
O Comma-Separated Values (CSV)
O Extensible Markup Language (XML}

Include stack traces (will increase file size)

Resolve stack symbols (will be slow)

Path:

C\Tools\ProcessMonitorLogfile.PML

Cancel

fime:

fime:

59

Fime:
fime:

Fime:
fime:

0.0000000 seconds, Kemel Time: 0.0312500 seconds,
0.0000000 seconds, Kemel Time: 0.0312500 seconds,

0.0000000 seconds, Kemel Time: 0.0312500 seconds, Private Bytes:

n: 0. seqnum: 0, connid: 0
fime:
fime:
fime:
fime:
Fime:
fime:
fime:
Fime:
fime:

0.0000000 seconds,
0.0000000 seconds,
0.0000000 seconds,
0.0000000 seconds,
0.0000000 seconds,
0.0000000 seconds,
0.0000000 seconds,
0.0000000 seconds,
0.0000000 seconds,
0.0000000 seconds,
0.0000000 seconds,
0.0000000 seconds,

Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,
Kemel Time: 0.0312500 seconds,

Private Bytes:

Private Bytes:
Private Bytes:

Private Bytes:
Private Bytes:
Private Bytes:
Private Bytes:
Private Bytes:
Private Bytes:
Private Bytes:
Private Bytes:
Private Bytes:

Private Bytes:
Privats Bytes:

¥ Lol Laad44aa4

ThinkCyber | NX Malware Analysis

Process Explorer

Process Explorer is another Sysinternals tool that offers a more detailed view of system activity than
the standard Windows Task Manager. It provides insights into handle information, DLLs loaded into a
process, and network activity.

LY Process Explorer - Sysinternals: www.sysinternals.com [DESKTOP-OD61403\Malware] - [m] X

File Options VWiew Process Find Users Help

FIEIERERIE R YN

Process
i fontdrvhost exe
| csrss.exe
= | | winlogon exe
1 fontdrvhost exe
B dwm exe
= explorer exe

CPU

0.02

0.04
0.03

Private Bytes
1436 K
1876 K
2500K
1,948 K

99,528 K
40,340 K

Working Set PID Description
0K 756
0K 500
24K 640
84K 748
17408K 944
34495 K 3680 Windows Explorer

Company Name

Microsoft Corporation

|l vmtoolsd.exe 0.04 19.348K 3216 K 3332 VMware Tools Core Service VMware., Inc.
=] Dynamic02 exe 1396 K 420K 2180
¥ procexpB4 exe 0.40 24076 K 10,580 K 320 Sysintemals Process Explorer Sysintemals - www sysintemals.com
=l i@ firefox.exe 133648 K 26420K 188 Firefox Mozilla Corporation
@ firefoxexe 118124 K 0K 3220 Firefox Mozilla Corporation
@ firefox.exe 21372K 0K 880 Firefox Mozilla Corporation
@ firefox.exe 49316 K 5.096 K 5964 Firefox Mozilla Corporation
@ firefox.exe 33,704 K 0K 1028 Firefox Mozilla Corporation
@ firefoxexe 26924 K 0K 4364 Firefox Mozilla Corporation
@ firefoxexe 26952 K 0K 4860 Firefox Mozilla Corporation
@ firefox.exe 27028K 0K 2688 Firefox Moszilla Corporation

CPU Usage: 0.86% Commit Charge: 53.01% Processes: 62 Physical Usage: 31.63%

When you're analyzing malware using Process Explorer, there are several things you should look for:

Process Hierarchy: Process Explorer provides a hierarchical view of processes, which can give you a
better understanding of parent-child relationships. Some malware may spawn from or inject
themselves into legitimate processes.

Handles and DLLs: Check which files, registry keys, and other resources a process is using by examining
its handles, and see which DLLs a process has loaded. Some types of malware will load DLLs that are
commonly used for malicious purposes, or they may inject code into legitimate DLLs.

Network Activity: Process Explorer can show you which processes have open network connections,
and where they're connected to. This can be useful for identifying malware that's communicating with
a command and control server.

Memory Inspection: Process Explorer allows you to inspect the memory of a process. This can be
useful for finding malicious code that's been injected into a process's memory.

Unusual or Suspicious Processes: Look for processes that you don't recognize, or that are behaving in
a suspicious way. For example, a process that's using a lot of CPU or disk resources could be a sign of
a malware infection.

Process Integrity Levels: Introduced with Windows Vista, process integrity levels are a part of the
security access control model that decides the permissions and user rights assigned to a process.
Malware may attempt to elevate its integrity level to gain more access rights.

Process Strings: Process Explorer can show you the strings in a process's memory. These can
sometimes give you clues about what the process is doing. For example, you might find a URL that the
malware is using to communicate with its command and control server.

Image Verification: Process Explorer can verify digital signatures of executables. Many types of

malware will not be digitally signed, or they may be signed with a certificate that's been revoked or
that belongs to a suspicious publisher.

60

ThinkCyber | NX

Malware Analysis

Process Explorer Best Practices

Understanding and Using the Process Tree

When you open Process Explorer, you'll notice it displays a hierarchical list of processes, also known as
a process tree. The tree structure indicates the relationship between processes, with child processes
indented under their parent process. This view can help you understand which processes were started
by which other processes, a crucial piece of information when dealing with malware or debugging

software.

Discover the Process Behind a Window with the Target Icon

Ever wondered which process is behind a particular window on your screen? Process Explorer can tell
you. Simply drag the target icon from the toolbar and drop it onto a window. Process Explorer will

immediately highlight the process in its list.

File Options View Process Find U

CIEIEEIERIERN XN

2 Process Explorer - Sysinternals: www.sysintemals.com [DESKTOP-0D61403\Malware]

===

Process CPU LEma.aEytes Working Set PID Description Company Name €
m | fontdrvhost exe 1436K 0K 756
B cerss.exe 0.35 1676 K 176K 500
(=) [0 winlogon exe 2500K 692K 640
W " fortdrvhost exe 1.948 K 152K 748
W dwm .exe 0.75 99.488 K 20024K 944
=== e 3680 Windows Explorer Microsoft Corporation
| vmtoolsd.exe 0.04 19.348K 4004 K 3332 VMware Tools Core Service VMware, Inc.
[w=] Dynamic2 exe 1,59 K 416K 2180
(2 procexpbd exe 044 24076 K 12,048K 320 Sysintemals Process Explorer Sysintemals - www sysintemals.com
2@ firefox exe 136.808 K 31,080 K 188 Firefox Mozilla Comoration
i@ firfox exe 118124 K 472K 3220 Firefox Mozilla Corporation
i@ firefox exe 21.372K 364K 880 Firefox Mozilla Cormporation
@ firefox exe 43316 K 5740K 5964 Firefox Mozilla Corporation
@ firefax exe ARDTMEK 336K 1028 Firefox Mozilla Corporation
@ firefox exe 26924 K 300K 4964 Firefox Mozilla Corporation
@ firefox exe 26,952 K 392K 4860 Firefox Mozilla Corporation
@ firefox exe 27.028K 416K 2688 Firefox Mozilla Comporation

CPU Usage: 3.82%

Commit Charge: 52.95% Processes: 62 Physical Usage: 32.27%

Use Colors to Identify Processes
Process Explorer uses colors to help you identify different types of processes:

= Blue: Processes owned by your user account.
= Pink: Windows system processes or processes running in the system context.
= Green: New processes.

= Red: Terminated processes.

= Grey: Jobs, which are groups of processes.

View Process

File Options

Find Users

d 2200 F 5| d

Process
=) B 7 wininit exe
=) [0 | services . exe
(= [a=]svchost exe
B WmiPrvSE exe

[5] suchost exe
(= [a5]swchaost exe
[az]sihost.exe
[n=]taskhostw exe
[svchost exe
[svchost exe
[svchost exe
= [#5]svchost exe
| dasHost exe

CPU

0o

Susp..
Susp..

<00
<00

CPU Usage: 1.13%

=ysinte| Color Selection ? b — m} X
Mew Objects Change... | ‘
Change...
o SR s Company Nane x
Own Processes Change...
] i
RN Change. lows Services Microsoft Comporation
O Relocated DLLs Change... Microsoft Corporation
Microsoft Corporation
g e
lows Services Microsoft Corporation
0 +NET Processes Change... lows Services Microsoft Corporation
Immersive Process Change... st Microsoft Comparation
lows Tasks Microsoft Corporation
Change... lows Services Microsoft Corporation
lows Services Microsoft Comporation
Graph Background Change... Jows Services Microsoft Corporation
lows Services Microsoft Corporation
v
Defaults Cancel

Commit Charge: 52.13% P

61

ThinkCyber | NX Malware Analysis

Detailed Process Information

Double-clicking a process in the list brings up a detailed information window. Here you can find tabs
containing different types of information about the process, such as performance graphs, environment
variables, security settings, and much more.

& 1 [#) Dynamic02.ex2180 Properties - m] X
File Options View Process Find Users Help = = T 3 —
- = ; ’—| |:| Image Performance Performance Grapl GPU Grapl reads
d ‘ i ‘ E = | R | a s = TCP/IP Security Environment Job Strings
Process CPU Private Bytes Working Set PID Descy
7 fortdrvhost exe 1436 K 0K 756 [Resalve addresses
W csrss.exe 032 1.672K 52K 500 ~
[wirlogon.exe 2500K 0K 640 P.. Local Address Remote Address State
" fontdrvhost.exe 1948K 16K 748 TCP 192.168.1.187:49307 217.16.25.198:6667 SYN_SENT
W dwm exe 069 99,752 K 16648 K 944 TCP 0.00.0:21 0.0.0.0:0 LISTENING
' Explorerieke 0.06 39464 K 18,028 K, :ﬂ;mwa-.dl TCP 0.0.0.0:25580 0.0.0.0:0 LISTENING
| vmtoolsd exe 0,05 16,984 K 3656 K 3332 VMwal
| Dynamic02 exe 1596 K 460K 2180
2 procexpbd exe 078 25684 K 14384 K 320 Sysint
£ 4@, firefox exe 138460 K 4820K 188 Finsfox
@ firefox exe 18124 K DK 3220 Firefox
@ firefox exe 21372K DK 880 Firefox
@ firefox exe 50,380 K DK 5964 Firefox
@ firefox exe BI4K DK 1028 Firefox
@ firefoxexe 26924 K DK 4964 Firefox
@ firefoxexe 26952 K DK 4860 Firefox
@ firefoxexe 27028K DK 2688 Firefox

CPU Usage: 3.25% Commit Charge: 52.06% Processes: 680 Physical Usage: 29.90%

Cancel

Check VirusTotal Results

Process Explorer is integrated with VirusTotal, a free online service that analyzes files and URLs for
viruses, worms, trojans, and other kinds of malicious content. You can enable the VirusTotal column in
Process Explorer to quickly check the VirusTotal results for each process's main executable file.

To do this, go to the Options menu, select VirusTotal.com, and then Check VirusTotal.com.

[DynamicD2.exe:2180 Properties - m] *
TCR/IP Security Environment Job Strings
Image Performance Performance Graph GPU Graph Threads
& QD Image File
File Options View Process Find Users Help
=] | E] | = =] ‘ R | i S N - [N"D signature was present in the subject)
Process CPU Private Bytes ~ Working Set BE::'T 2 : o 25 0155045 2006
7 SearchFiterHost exe 2028 13324 i
4, SearchProtocolHost.. 1,888 K 6,928 K A
(=] svchost exe 2852 K T60 K | C:\Users\Malware\Desktopbasicdynamic\Dynamic02.exe ‘ Explore
[a:]lsass.exe <0.01 5568 K 5,656 K Command line:
i :“'Z:::hﬂﬂ e 008 1:32 E 782 E | "C:\Jsers\Malware \Desktop'basicdynamic\Dynamic02.exe”™ |
=i | winlogon.exe 2352K 0K Current directory:
B ' fontdrvhost exe 1948 K 436 K | CiWsers\Malware \Desktop\pasicdynamic), |
B dwm exe 0.07 98.736 K 27068 K Autostart Location:
1= explorerexe 0.08 37348K 37600 §
(i} vmtoolsd.exe 005 16352K 219K LE |
[n-] Dynamic02.exe 1596 K 2% K Parent: explorer.exe(3680) =
[procexpbd exe 059 25092 K 23652 K Verify
@ R 136.548 K 8536 K User: DESKTOP-0D61403\Malware R
@ firefox exe 118,268 K 1512 K Started: 9:06:23PM 5/18/2023 Image: 32-4it Lo
i@ firefox exe 21516 K 968 K . Kill Process
@ frefox exe 46,508 K 1008~ Comment: |
i@ firefox exe 33.820K 1.088 K VirusTotal; | [submit |
CPU Usage: 1.99% Commit Charge: 53.22% Processes: 67 Physical Us| Data Execution Prevention (DEP) Status: Disabled (permanent)
Address Space Load Randomization: Disabled (permanent)Disabled
Control Flow Guard: Disabled
Enterprise Context: MNfA
OK Cancel

62

ThinkCyber | NX Malware Analysis

Explore DLLs and Handles

The lower pane of the Process Explorer window shows you which DLLs are loaded by the selected
process and which handles it has open. This can be useful for identifying DLLs that may be causing a
problem or finding out what files, registry keys, or other resources a process is accessing.

¥ Process Explorer - Sysinternals: www.sysinternals.com [DESKTOP-0QD61403\Malware] - m} x
File Options View Process Find DLL Users Help
di@gmn0gsxwe [[l 7
Process CPU Prvate Bytes ~ Working Set PID Description Company Name 2
[z|smartscreen exe 9,696 K 1.108K 64 Windows Defender Smart Screen Microsoft Corporation
[#5]swchost exe 0.03 4732K 1.884 K 868 Host Process for Windows Services Microsoft Corporation
(= [#] swehost exe 18752 K 9372K 328 Host Process for Windows Services Microsoft Corporation
[&]sihost.exe 5.300 K 0K 2996 Shell Infrastructure Host Microsoft Comporation
[#:]taskhostw exe 5776 K 860K 3116 Host Process for Windows Tasks Microsoft Corporation
[#5]swchost exe 12692 K 180K 248 Host Process for Windows Services Microsoft Comporation
[mz] svehost exe 14,516 K 3296 K 428 Host Process for Windows Services Microsoft Corporation
[#5]swchost exe 0.39 20332 K 3076 K 712 Host Process for Windows Services Microsoft Corporation
(= [#] swehost exe 713K 32K 824 Host Process for Windows Services Microsoft Corporation
B dasHost exe 438K 0K 115
' ctfmon exe 2920K 3524K 335
[wZ|svchost exe 7.608 K 2632 K 1256 Host Process for Windows Services Microsoft Corporation b
Mame Description Company Name Path VirusTotal 2
berypt dll Windows Cryptographic Primitives ... Microsoft Corporation C:AWindows \SysWOWE4 \berypt dil
beryptprimitives dl Windows Cryptographic Primitives Microsoft Corporation CAWindows'\SysWOWE4 \beryptprimitives dil
combase dll Microsoft COM for Windows Microsoft Corporation CAWindows'\SysWOWE4 \combase dil 076
cryptbase dil Base cryptographic AP| DLL Microsoft Corporation indows " SysWOW 64 \cryptbase dil
dnsapi.dil DMS Client API DLL Microsoft Corporation indows \SysWOWE4 \dnsapi.dl
Dynamic02.exe \Users'MalwareDesktop \basicdynamic'Dynamic02 exe
FWPUCLNT.DLL FWP/IPsec User-Mode API Microsoft Corporation CAWindows \SysWOWGE4\FWPUCLNT.DLL
gdi32.dll GDI Cliert DLL Microsoft Corparation CAWindows\SysWOWE4\gdid2 dil
gdi32full dil GDI Client DLL Microsoft Corporation indows"\SysWOWE4 \gdi3Zull Il
imm32.dll Mutti-User Windows [MM32 API Cli... Microsoft Comaration C\Windows \SysWOWE4\imm 32.dIl e
CPU Usage: 3.28% Commit Charge: 52.47% Processes: 62 Physical Usage: 28.46%

Replace Task Manager with Process Explorer

If you prefer Process Explorer over the default Task Manager, you can make Process Explorer replace
Task Manager. To do this, go to the Options menu in Process Explorer and check Replace Task Manager.
Now, whenever you invoke Task Manager, Process Explorer will open instead.

¥ Process Explorer - Sysinternals: www.sysinternals.com [DESKTOP-0D61403\Malware] - m} X
File Options View Process Find DLL Users Help
d o G === [|
Proce Verify Image Signatures Private Bytes =~ Working Set PID Description Company Mame N
VirusTotal.com » 9696 K 0K 64 Windows Defender Smart Screen Microsoft Corporation
4732K 1204 K 868 Host Process for Windows Services Microsoft Corporation
hwvaye-Ontop 18776 K 9868K 328 Host Process for Windows Services Microscft Corporation
¥ Replace Task Manager 5300 K 1.040K 2896 Shell Infrastructure Host Microsoft Comparation
PRSI L o 5776 K 764K 3116 Host Process for Windows Tasks Microsoft Corporation
Allow Only One Instance 12692 K 2652K 348 Host Process for Windows Services Microsoft Corparation
Y 14516 K 3.244K 428 Host Process for Windows Services Microsoft Comporation
“ Confirm Kill 20332K 2576 K 712 Host Process for Windows Services Microsoft Corporation
Tray lcons ' 7136 K 144K 824 Host Process for Windows Services Microsoft Corporation
4BK 0K 1%
Configure Symbols... 2520K 1.780K 3356
Configure Colars... 7.660 K 3016 K 1256 Host Process for Windows Services Microscft Corporation R
Name Difference Highlight Duration... Company Name Path Virus Total [l
berypt. Font... fitives ... Microsoft Corporation CAWindows"SysWOWE4 berypt dil
beryptprmitives.dil Windows Cryptographic Primitives ... Microsoft Comporation CAWindows\SysWOWE4 beryptprimitives.dil
combase.dll Microsoft COM for Windows Microsoft Corporation CAWindows\SysWOW6E4 combase dll 0/76
cryptbase.dil Base cryptographic APl DLL Microsoft Corporation C\Windows"\SysWOWE4 \cryptbase dil
dnsapi dil DMS Client API DLL Microsoft Comporation CAWindows\SysWOW 64 dnsapi.dl
Dynamic02 exe C\Users'Malware \Desktop basicdynamic’Dynamic02 exe
FWPUCLNT.DLL FWFP/IPsec User-Mode AP Microsoft Corporation C\Windows\SysWOWE4\FWPUCLNT.DLL
gdi32.dl GDI Client DLL Microsoft Comporation CAWindows\SysWOW6E4 gdid2 dl
gdi32full dil GDI Client DLL Microsoft Corporation CAWindows\SysWOW64gdi32full dil
imm32.dil Muti-User Windows [MM32 AP Cli... Microsoft Corporation CAWindows ' SysWOWE4%imm 32.dl Y
CPU Usage: 247% Commit Charge: 52.79% Processes: 62 Physical Usage: 29.85%

Save Information with a Snapshot
You can save a snapshot of the current state of your system in a file for later analysis. Go to File > Save
As to do this. The file will be saved in a text-based format that you can open in any text editor.

63

ThinkCyber | NX Malware Analysis

Hands-on Example: Using Process Monitor and Process Explorer
Step 1: Execute the Malware in a Controlled Environment.

Step 2: Start Process Monitor. Launch Process Monitor and start capturing events. You'll see a real-
time stream of process activities.

Step 3: Filter the Events with the Malware running. Filter the events to show only the activities related
to this process. This can include file operations, registry changes, and more.

File Edit Event Filter Tools

EEHLNRm Y

W Process Monitor Filter x

Display entries matching these conditions:

Process Name ~lis ~ | Isass.exe ~| then |Include

Time ... Process Name PID 0 X
11:50:.... [#ctmon exe 3968 HY Handle Tags: (0
11:50: ctfmon sxe 3968 Reset Add Remove
11:50: ‘cifmon exe 3568 Handle Tags: (0
11:50: ‘cffmon exe 1968 d
11:50 ctfmon exe 3968 Column Relation Value Action ~ | [HandleTags: 60
11:50. cifmon.exe 3968 Process Name is lsass.exe Include d
11:50. cifmon exe 1568 Process Name is Procmon exe Exclude HandleTags: (0
150 ctfmon exe 3362 @ Process Name i8 Procexp.exe Exclude fry Value
11:50: ‘ctfmon exe 3968 , Length: 4, Data: 0
11:50 ctfman sxe 3968 @ Process Name is Autoruns exe Exclude
11 ctfman exe 1968 @ Process Name is ProcmonG4. exe Exclude
11 cfmon exe 3963 @ Process Name 18 Procexpb4 exe Exclude HandleTags: 0«0
11:50: ‘ctfmon exe 3963 @ Process Name [E] System Exclude d
11:50:... c‘lfmon exe 3968 H @ Cperation begins with IRP_MJ_ Exclude v | [HandleTags: 0
11:50:... [Hetfmon.exe 3968 HE d v
< Cancel Apply >

Showing 74,142 of 182,891 events (407

Step 4: Examine the Activities. Look for any suspicious activities, such as modifications to system-
critical files or registry keys.

Step 5: Launch Process Explorer. Use Process Explorer for a more detailed view of the Malware’s
process. Examine its loaded DLLs, open handles, and network activities.

Step 6: Analyze the Findings. Document your observations and analyze Gamma's behavior.

Exercises

Exercise: Set up a sandbox environment and run a sample malware. Use Process Monitor to observe
its activities. What files, registry keys, or network activities does it interact with?

Exercise: Using Process Explorer, examine a running process in your system. Look at its DLLs, handles,
and network activities. Can you identify any suspicious behavior?

Exercise: Choose a process and monitor it over time using both Process Monitor and Process Explorer.
Document any changes in its behavior.

64

ThinkCyber | NX Malware Analysis

Running Malware Samples in a Sandbox
Once you have set up your sandbox environment, you can safely execute malware samples within it.
This allows you to observe the malware's behavior without posing a risk to your system.

Remember that running malware, even in a sandbox, carries risks. Make sure your sandbox is isolated
from your network to prevent the malware from spreading. Ensure you are legally allowed to possess
and run the malware sample. Do not attempt to reverse-engineer or modify malware unless you have
the necessary skills and legal permissions.

Hands-on Example: Running a Malware Sample in a Sandbox
In this example, we'll use a malware sample. We'll use a sandbox created with VirtualBox, but the
principles apply to other sandbox environments as well.

= Step 1: Transfer the Malware Sample. Transfer the malware sample to the sandbox. This can
be done via a shared folder, USB emulation, or network transfer, depending on your sandbox

setup.

= Step 2: Prepare Monitoring Tools. Make sure you have your process monitoring (e.g., Process
Monitor), network monitoring (e.g., Wireshark), and any other analysis tools ready to go.

= Step 3: Start the Monitoring Tools. Before you execute the malware, start your monitoring
tools. This ensures they capture the malware's initial activities.

= Step 4: Execute the Malware. Run the malware sample in the sandbox. Be ready to observe
any immediate effects.

= Step 5: Observe and Analyze. Watch the process and network monitors for changes. Note any
new processes, network connections, file modifications, or other activities.

= Step 6: Clean Up. Once you've observed the malware's behavior, clean up the sandbox. If
you've taken a snapshot, you can restore it to return the sandbox to its clean state.

65

ThinkCyber | NX Malware Analysis

System-Level Changes
Dynamic malware analysis involves executing malware samples in a controlled environment to observe
their actions, interactions, and effects on the system. System-level changes are often necessary to
create a suitable environment for this analysis and to capture relevant information during the
execution of malware.

Here are some examples of system-level changes in basic dynamic malware analysis:

1. Virtualization: Malware analysis is typically performed in a virtualized environment to isolate
the malware from the host operating system and prevent any potential damage. Virtual
machines or sandboxing techniques are commonly used to create these isolated
environments.

2. Monitoring and Logging: System-level changes involve enabling and configuring various
monitoring and logging mechanisms to capture important information during malware
execution. This can include monitoring system calls, network traffic, file system changes,
registry modifications, and other relevant activities.

3. Network Configuration: Modifying the network configuration of the analysis environment
may be necessary to redirect network traffic generated by the malware to monitoring tools or
capture packets for analysis. This allows researchers to analyze the malware's communication
behavior and identify any malicious network activity.

4. System Configuration: Adjusting the system configuration settings, such as disabling certain
security features, enabling debug options, or altering system policies, may be required to
facilitate the execution of malware and observe its behavior without hindrance.

5. Instrumentation: Injecting additional code or using specialized tools to instrument the
malware sample or the system itself can help gather more detailed information during the
analysis. This can involve hooking API calls, modifying system libraries, or using specialized
tools like debuggers or dynamic analysis frameworks.

6. Resource Monitoring: Modifying the system to monitor resource utilization, such as CPU,
memory, and disk activity, helps identify any abnormal or suspicious behavior exhibited by the
malware.

These system-level changes aim to create a controlled and instrumented environment that allows
security researchers to observe and analyze the actions and effects of malware while minimizing
potential risks to the host system. By making these changes, researchers can gain insights into the
behavior, capabilities, and potential damage caused by malware, which can then be used to develop
mitigation strategies and improve overall security measures.

66

ThinkCyber | NX Malware Analysis

Regshot

Regshot is an open-source utility that compares Windows Registry snapshots before and after system
changes. It provides valuable insight into the modifications made by a software installation or system
event.

To install Regshot:
1. Download the latest version.
2. Extract the downloaded archive.
3. Run the "Regshot.exe" file to launch the application.

Using Regshot

1. Launch Regshot and choose the "1st shot" option to create an initial snapshot of your system's

registry.
@y Regshot 1.9.0 x64 Unic.. — x
Compare logs save as: [atsor
1st shot
(® Plain TXT (CJHTML document _
2nd shot
[scan dir1[;dir2;dir3;...;dir nn]: Compare
C\Windows o
Output path: Quit

Ct'\Users\Malware Data
Wsersip ki = About

Add comment into the log:

| ‘ English V

2. Make the desired changes to your system, such as installing software or changing settings.
3. Click on "2nd shot" to create a second snapshot.

b Regshot 1.9.0x64 Unic... — X

Compare logs save as:
(®Plain TXT () HTML document

1st shot

| Ewrprar |
Shot
Scan dir 1[;dir 2;dir 3;.. . di :
[Jscan dir1[;dir2;dir3;...;dir nn] Shot and Save..
C:\Windows
Load...
Output path: Quit

C:\Users\Malware Data
Wsers\M YApp o

Add comment into the log:

| | English ~

Keys: 459841 Values: 770073 Time:145203ms

4. Choose "Compare" to generate a comparison report.

The report will display all the registry modifications made between the two snapshots, including
added, deleted, and modified keys and values.

67

ThinkCyber | NX Malware Analysis

Regshot: ANSI vs UNICODE

The version of Regshot you should use for malware analysis, whether ANSI or Unicode, depends on
the type of strings you expect to encounter during your analysis.

ANSI version can handle only ANSI strings which are typically Latin alphabets without any special
characters, whereas the Unicode version can handle a wider range of characters, including those from
various international character sets.

If you're dealing with malware that might have been developed in, or is targeting, non-Latin script
environments (e.g., languages like Chinese, Arabic, etc.), the Unicode version would be more suitable.

If you're unsure, it may be a good idea to opt for the Unicode version, as it provides broader coverage.

Analyzing Regshot Report

Analyzing a RegShot report is a key step in understanding the changes a particular piece of malware or
software has made to a system. Here are some suggestions on how to analyze a RegShot report:

1. Look for Key Changes: Review the report for key changes in system files and Windows Registry
keys. These could indicate what the malware has modified on the system. This could include
changes to Startup keys, Scheduled Tasks, or other system configurations.

2. ldentify Added/Modified Values: Pay attention to any added or modified registry values. They
can indicate persistence mechanisms, changes in security settings, or other malicious behavior.

3. Check for Suspicious Entries: Look for entries that seem suspicious or out of place. These
might include entries with names that are strings of random characters, entries that reference
unfamiliar executables, or entries that seem to be trying to mimic or impersonate legitimate
entries.

4. Focus on Autostart Locations: Many pieces of malware will add entries to autostart locations
in the registry (such as
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run) to ensure they
are run each time the system starts.

5. Detect File Path Changes: If file paths have been changed or files have been added or deleted,
it could be an indication of malware activity. This could involve dropping malicious payloads
or altering system files.

6. Correlate with Other Information: If possible, correlate the information in the RegShot report
with other information from your analysis. For example, if you've analyzed network traffic or
system logs, you might be able to tie certain registry or file changes to specific network
connections or events.

7. Learn Commonly Targeted Keys: Knowing which keys are commonly targeted by malware can

help you quickly identify suspicious changes. Some of these include keys related to software
autostart, installed services, browser helper objects (BHOs), etc.

68

ThinkCyber | NX

Regshot Hands-On Exercise

In this exercise, you will analyze the registry changes made by installing a simple application. We will

Malware Analysis

use the popular open-source text editor Notepad++ as an example.

installation.

Download and install the latest version of Regshot.
Launch Regshot and create a "1st shot" snapshot.

Download and install Notepad++.
Create a "2nd shot" snapshot in Regshot.
Compare the two snapshots and review the registry modifications made

by the Notepad++

*new 2 - Notepad-+ +

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7
sHiEB RG] Bloe|ti|lxx|BE|] compe s | = PR CDEEEz ~v=
Hrew 203 I b= MIME Tools > Compare NavBar
00012210 RegisterServiceProcess ~ Converter ? lerviceProcess
MNppExport >
Unicode Strings: Plugins Admin...
000CE142 \Device\ntndis Open Plugins Folder... tndis
000C0E162 \DosDevices\ntndis O000EIeZ DosDevices\ntndis
CO000E182 ntndis QC000E18A ntndis
O000OE1SA \Driver 0000E19A \Driver
CO0O00E48% ntndis 0C000E498 ntndis
CO000E4A% NameSpace QC00E4A8 NameSpace
4BC Win n ¥ 4BC W n
QOOQOETFE VS5S_VERSICH_INFQ Q0000ETFE VS5_VERSICON_INFO
Q0000E85A StringFileInfo OC00E85A StringFileInfo
000QOEB7E 040904B0 0000ESTE 040904B0
CompanyNams Companylame
O00OESBO Microsoft 0000ESBO Microsoft
CO000E&C4 Windows QC000EBCH Windows
0000ESDE Operating System 0000ESDE Cperating System
QO000ES0Z FileDescription QOCQ0ES0Z FileDescription
COQOQE%Z4 NDIS 5.1 Driver QC0Q0ES24 NDIS 5.1 Driver
O000E94A FileVersion 0000E94A FileVersion
CO000E®64 5.1.2600.0 built by: WinDDK Q000E964 5.1.2600.0 built by: WinDDK
O000OESAZ InternalName 0000ESAZ InternalName
0000ESBC ndis3Z.sys 0000E9BC ndis3Z.sys
0000ESDA LegalCopyright 0000ESDA LegalCopyright
QOOQESFA Microsoft Corporation. All righ QOC00ESFA Microsoft Corporation. All righ
CO000EASZA OriginalFilename QCO00EASA OriginalFilename
0000EATC ndis3Z.sys 0000EATC ndis3Z.sys
OO0OEASA ProductName 0000EASR ProductName
QO000EAB4 Microsoft Corporation OC00EAB4 Microsoft Corporation
O000EAE€& ProductVersion 0000EAEE ProductVersion
C000EBCO4 5.1.2€00.0 QC000EBC4 5.1.2€00.0
O0O0QEBZ2Z WVarFilelInfo v QC000EBZZ VarFileInfo
< > NS >
Mormal text file length : 25,887 lines: 935 Ln:912 Col:15 Pos:25274 Windows (CRLF) UTF-8

INS

69

ThinkCyber | NX Malware Analysis

Autoruns

Autoruns is a powerful utility by Sysinternals (Microsoft) that displays all the programs, drivers, and
services configured to run automatically at startup. Autoruns provides a comprehensive view of these
entries, allowing you to identify and disable unwanted or potentially harmful items.

T Autoruns - Sysinternals: www.sysinternals.com - O X

File Entry Options Help

FEEE:] I

[%] appinit (%) knownDls @ winlogon &% winsodk Providers 2 printMonitors) LSAProviders &' NetworkProviders &5f wvi F] Office
O Everything g logon 1 Explorer @ InternetBxplorer [Scheduled Tasks 4 Services &) Drivers [Codecs [T BootExearte [Image Hijacks

Autorun Entry Description Publisher Image Path ~
ﬁ HKLM\SYSTEM\CurrentCanirolSet\Control\SafeBoof\Alternate Shell
B cmd.exe Windows Command Processor (Verified) Microsoft Windows c\windows\system32\cmd.exe
HKLM\SOF TWARE\Mi ff\Windows\CurrentVs Run
gﬂ VMware User Process VMware Tools Core Service (Verified) VMware, Inc. c\program files\vmware\vmware toolsivmt.
@’ HKLM\SOF TWARE\Wow6432Node\MicrosoftWindows\CurrentVersion\Run
| =] SunJavalUpdateSched Java Update Scheduler (Verified) Oracle America. Inc. c\program files (x86)\common files\javalja
@’ HKCU\SOF TWARE\MicrosoftWindows\CurrentVersion\Run
Microsoft Edge Update File notfound: C:\Users\Malware\AppDatal,
@’ HKLM\Software\Classes\"\Shel Ex\ContextMenuHandlers
[010 Editor Shell Extension 010 Editor Shell Extension [(Verified) SwestScape Software k'\program files\010 editor|shlext010x64 dll
14 7-Zip 7-Zip Shell Extension (Notverified) Igor Paviov c\program files\7-zip\7-zip.dil

1% ANotepad++64 ShellHandler for Notepad++ (... (Verified) Notepad++ c\program files\notepad++\nppshell_06.dIl
%] WinRAR WInRAR shell extension (Verified) win.rar GmbH c:\program files\winrar\rarext.dil
HKI M\Sofware\Classes\DirectoriShallFAContextMennHandlers e
< >
Ready. Signed Microsoft Entries Hidden.

Here are some of the things Autoruns reports:
= Registry Entries: These are entries from multiple locations within the Windows registry that
define what programs should run at system startup or user logon. These can be found in
several different registry hives and keys, such as
"HKLM\Software\Microsoft\Windows\CurrentVersion\Run" and others.

= Startup Folder Entries: Programs can also be set to start up automatically by placing a shortcut
to them in the Startup folder for a user profile or for the entire system.

= Browser Helper Objects and Extensions: These are add-ons for Internet Explorer that get
loaded automatically when the browser starts.

= Scheduled Tasks: Tasks that are configured to run at a certain time or under certain conditions
are shown.

= Services: Windows services that start automatically when the system boots are displayed.
= Drivers: Drivers that are loaded at system boot are shown.
= Codecs: Some codecs are loaded at startup.

= Boot Execute: This is a special list of programs to be run by Windows at startup, typically used
for low-level system utilities.

= Image Hijacks: Image hijacks are a technique that malware sometimes uses to run in place of
legitimate programs.

By showing all these different types of auto-starting programs and not just those defined in the registry,

Autoruns provides a more comprehensive view of what is set to run automatically on a Windows
system.

70

ThinkCyber | NX Malware Analysis

Best Practices

Understand Autorun Locations

Autoruns shows entries from locations in the registry and file system that Windows checks during
bootup and login. These locations include run keys in the registry, startup folders, boot execute images,
services, drivers, and more. Understanding these locations can help you interpret the data Autoruns
presents.

= Autoruns [DESKTOP-0D61403\Malware] - Sysinternals: www.sysinternals.com - O X
File Entry Options User Help
HERIAXE Al]

| Applnit | KnownDLLs ' Winlogon f\ Winsock Providers Q Print Monitors @ LSA Providers E’ Network Providers ﬂa WML |] Office
=7 Everything é Logon \J Explorer ‘Q Internet Explorer hj Scheduled Tasks % Services Drivers Codecs E Boot Execute E Image Hijacks

Autorun Entry Description Publisher Image Path)
ﬁ’ HKLM\System\CurrentControlSet\Control\Terminal Server\Wds\rdpwd\StartupPrograms
[®] rdpclip RDP Clipboard Monitor (Verified) Microsoft Windows ~ c\windows\system32\rdpclip.exe

ﬁ’ HKLM\SOFTWARE\MicrosoftiWindows NT\CurrenfVersion\Winlogon\Userinit

[¥] C\Windows\system32\userinitexe Userinit Logon Application (Verified) Microsoft Windows ~ c\windows\system32\userinitexe
Q HKLM\SOFTWARE\MicrosofiWindows NT\CurrentVersion\Winlogon\VmApplet

1™ SystemPropertiesPerformance.exe Change Computer Performan... (Verified) Microsoft Windows c/\windows\system32\systempropertiesper..
@’ HKLM\SOF TWARE\MicrosoftWindows NT\CurrentVersion\Winlogon\Shell

m explorer.exe Windows Explorer (Verified) Microsoft Windows c\windows\explorer.exe
ﬁ’ HKLM\SYSTEM\CurrentControlSetiControl\SafeBoot\AlternateShell
i ﬁ cmd.exe Windows Command Pr (Verified) Microsoft Window: chwindows\system3Zicmd.exe |
HKLM\SOF TWARE\MicrosoftiWindows\CurrentVersion\Run
Ea SecurityHealth Windows Defender notificatio erified) Microsoft Windows c\program files\windows defenderimsasc.
tiwraTertserProte tiwareToots Core-Servite (Ve vihrare i TprograTT e s TwaT ST oS T

@it HKI MISOF TWARF\W owh432NodelMicrosafWindows\ CorentVersion! Rin
< >

msascuil.exe Size 615K

E Windows Defender notification icon Time: 9/26/1920 9:44PM
Microsoft Corporation Version: 4.12.16299.15
%ProgramFiles%\Windows Defender MSASCuil .exe

Ready. No Filter.

Use the Built-in Filters
Autoruns can display a lot of entries, many of which are legitimate and necessary for Windows to

function properly. To make it easier to find potentially unwanted or suspicious entries, use the built-in
filters:

= Hide Microsoft Entries: This option will hide all entries that are part of the Windows operating
system, leaving only third-party software. This can be useful for quickly identifying non-
Microsoft software configured to run at startup.

= Hide Empty Locations: For instance, an application might create a registry key to start a
service, but if that application is uninstalled and the key isn't removed.

T Autoruns [DESKTOP-ODE1403\Malware] - Sysinternals: www.sysinternals.com - O X
File Entry Options User Help
™= §E % ~__Hide Empty Locations
|%] Appini il Hide Micrasoft Entries Winsock Providers 2 Print Monitors ﬂa LSA Providers £ Network Providers ﬂﬁ WMI |] Office
27 Everyth Hide Windows Entries Explorer [Scheduled Tasks % Services =) Drivers Codecs [7] BootExecute [Image Hijacks
Autorun En bR e = iption Publisher Image Path &
HKLMY Scan Options... ootlAltemateShell
= Font. ws Command Processor (Verified) Microsoft Windows cllwindows\system32\cmd.exe
@ HKLMY: ersion\Run
ﬁ VMware User Process VMware Tools Core Service (Verified) VMware, Inc c\program files\vmware\vmware tools\vmt.
@’ HKLM\SOF TWARE\Wow6432Node\MicrosoftWindows\CurrentVersion|Run
E SunJavalUpdateSched Java Update Scheduler (Verified) Oracle America. Inc. c\program files (x86)\comman files\java)ja...
@ HKCU\SOF TWARE\MicrosoftiWindows\CurrentVersion\Run
" Microsoft Edge Update File not found: C:\Users\Malware\AppData\..
@’ HKLM\Software\Classes\"\ShellEx\ContextMenuHandlers
|| |%] 010 Editor Shell Extension 010 Editor Shell Extension (Verified) SweetScape Softwa... c\program files\010 editorishlext010x64. dll
%] |12 7Zip 7-Zip Shell Extension (Not Verified) Igor Paviov c\program files\7-zip\7-zip.dll
[%] ANotepad++64 ShellHandler for Notepad++ (... (Verified) Notepad++ c\program files\notepad++\nppshell_06.dII
1% WinRAR WinRAR shell extension (Verified) win.rar GmbH c\program files\winrar\rarext.dll
alt HKI M\Sofware\Classes\DirectondShelFACantextMenuHandlers b
< >
Ready. signed Microsoft Entries Hidden.

71

ThinkCyber | NX Malware Analysis

Scan with VirusTotal

Autoruns is integrated with VirusTotal, a free online service that scans files for viruses, worms, trojans,
and other kinds of malicious content. By enabling the VirusTotal.com option, you can quickly check
whether any of your autorun entries have been flagged by antivirus software.

= Autoruns [DESKTOP-0D61403\Malware] - Sysinternals: www.sysinternals.com - [m] x
File Entry Options User Help
HEBAIXE me[]
|%] Applnit |% knownDLLs ' Winlogon K\ Winsock Praviders 23 Print Monitors @ LSA Providers &' Network Providers ﬁi WML I] Office
3 Everything ## logon [{ Bxplorer @ IntenetBxplorer [Scheduled Tasks 3 Services & Drivers [Coders] BootExeaute [Image Hijadks
Autorun Entry Description Publisher Image Path ~
Q HKLM\SYSTEM\CurrentControlSefiControl\SafeBoot\AlternateShell
e+ cmd exg Nindows Command Processor (Verified) Microsoft Windows c\windows\system32\cmd exe
& HKLM\SOFT! Delete Ctr+D pn\Run
@ VMwari Copy Crl+C pols Core Service (Verified) VMware, Inc c\program files\vmware\vmware toolsivmt.
ﬁ HKLM\SOFT! s\CurrentVersion\Run
E sunday Jump to Entry... te Scheduler (Verified) Oracle America. Inc. c:\program files (x86)\common files\javalja...
& HKCUISOFT ool on\Run
p to Image...)
[#7 Micros File not found: C:\Users\Malware\AppDatal,
ﬂ HKLM\Softws Verify Image lers
12 010 Ed\I Check VirusTotal IShell Extension (Verified) SweetScape Softwa... c:\program files\010 editor\shlext010x64.dll
(& 7-Zi Extension (Not Verified) Igor Pavlov c\program files\7-zip\7-zip.dll
i Process Explorer... ler for Notepad++ (... (Verified) Notepad++ c\pragram files\notepad++\nppshell_06.dIl
Search Online... Ctrl+M hell extension (Verified) win.rar GmbH c\program files\winrar\rarext.dll
& HKI MiSofws= : enuHandlars b
< Find... Ctrl+F >
and.exe Properties... Alt+Enter
Windows rmer———tresyrrs 10:14 PM
Microsoft Corporation Version: 10.0.16299.15
cmd.exe
Ready. Signed Microsoft Entries Hidden.

Save and Compare Autoruns Data

Autoruns allows you to save the list of autorun entries to a file. This can be useful for troubleshooting:
you can save a list when the system is working correctly, then later, if you encounter problems, you
can save a new list and compare it with the old one to see what has changed.

& Autoruns [NT AUTHORITY\SYSTEM] - Sysinternals: www.sysinternals.com — (] x
File Entry Options User Help
Open... Ctrl+0
s Gt hon & Winsock Providers ‘2 Print Monitors W 154 Providers £ Network Providers ﬁ WMI I‘_] Office
Analyze Offline System... ﬁ Internet Explorer hj Scheduled Tasks % Services % Drivers @ Codecs B Boot Execute E Image Hijacks
tion Publisher Image Path Timestamp Wirus Total
Compare...
es 5/18/2023 8:51 PM
Refresh F5 . c\program files (x86)\winpca... 3/1/2013 4:.28 AM
Alias Manager and T... (Verified) VMware, I.. c\program files\vmwaretvm... 7/31/2022 10:15 AM
Bxt Tools: Provides sup... (Verified) VMware, ... c\program files\vmwareivm... 8/2/2022 3:.04 PM
€ >
|1-| rpcapd.exe Size: 115K
Remote Packet Capture Protocol v.0 Time: 3/1/2013 4:28 AM
Riverbed Technology, Inc. Version: 4.1.0.2980
"%ProgramFiles(x86) ¥ \WinPcaprpcapd.exe™ -d -f “%ProgramFiles(x86) Yo \WinPcapypcapd.ini™
Ready. Signed Microsoft Entries Hidden.

Rescan and Refresh

You can refresh the displayed entries at any time by pressing F5 or using the rescan option in the File
menu. This can be useful if you've made changes to your system and want to see their effect on your
autorun entries.

72

ThinkCyber | NX Malware Analysis

Explore Other Users' Autorun Entries

By default, Autoruns shows you the autorun entries for the current user. But you can also view the
entries for other user accounts on the system using the User menu. This can be helpful if you're
troubleshooting a problem specific to another user account.

T Autoruns [NT AUTHORITY\SYSTEM] - Sysinternals: www.sysinternals.com — O X
File Entry Options User Help
= 2 8 9 X | ¥ NTAUTHORITY\SYSTEM
1% Applnit [K NT AUTHORITYALOCAL SERVICE 2 Print Monitors W LsA Providers & Network Providers ﬂ? WMI |] Office
27 Everything éé NT AUTHORITY\NETWORK SERVICE eduled Tasks % Services Drivers @ Codecs [BootExecute [T Image Hijacks
Autorun Entry DESKTOP-ODG1403\Malware |ub||sher Image Path Timestamp Virus Total
Q’ HKLM\System\CurrentControlSet\Services 5/18/2023 8:51 PM
Remote Packet Capture Prot.. .. c\program files (x86)\winpca... 3/1/2013 4:28 AM
!II VGAUthService VMware Alias Manager and T... (Verified) VMware, |.. c\program files\vmware\vm... 7/31/2022 10:15 AM
ﬂ WYMTools VMware Tools: Provides sup... (Verified) VMware, |.. c\program files\vmwargivm... 8/2/2022 3:.04 PM
< >

rpcapd.exe Size: 115K
Remote Packet Capture Protocol v.0 Time: 3/1/2013 4:28 AM
Riverbed Technology, Inc. Version: 4.1.0.2980
"%ProgramFiles(x86) ¥e\WinPcaprpcapd.exe” -d -f “%ProgramFiles(x86) % \WinPcapyrpcapd.ini®

Ready. Signed Microsoft Entries Hidden.

Careful with Deletion

Autoruns allows you to delete autorun entries, but be careful with this feature. Deleting an entry
doesn't uninstall the software; it just stops it from running automatically. If the software is necessary
for Windows or another application to function correctly, deleting its autorun entry could cause
problems.

Entry Jumping

You can right-click on an entry and select Jump to Entry or Jump to Image to open the Registry Editor
or Explorer at the location of the selected entry or file. This is a fast way to investigate entries in more
detail.

T Autoruns [NT AUTHORITV\SYSTEM)] - Sysinternals: www.sysinternals.com — m} *
File Entry Options User Help
HEHAXE mee[]

|%] Applnit |%) KnownDLLs . Winlogon C\ Winsock Providers Q Print Monitors @ LSA Providers "-'." MNetwork Providers ﬁ WML |] Office
22 Everything é Logon :J Explorer 4 Internet Explorer Lj Scheduled Tasks % Services Drivers D Codecs ﬁ Boot Execute E Image Hijacks

Autorun Entry Description Publisher Image Path Timestamp Virus Total
Q HKLM\System\CurrentControlSef\Services 5/18/2023 8:51 PM
mﬂﬁ_ Deret oD .. c\program files (x86)winpca... 3/1/20134.28 AM
(55 vGAuthService slete " VMware, L. c\program files\vmware\vm... 7/31/2022 10:15 AM
ﬂ VYMTools Copy Ctrl+C VMware. L. c\program files\vmware\vm... 8/2/2022 3.04 PM

I Jump to Entry...

Jump to Image...

Verify Image

Resubmit to VirusTotal

Process Explorer...

Search Online... Ctrl+M
Find... Ctrl+F

b >
rpcapd.exe Properties... Alt+Enter

Remote Packet Capture Protocol v.0 Time: 3/1/2013 4:25 AM
Riverbed Technology, Inc. Version: 4.1.0.2980
"=ProgramFiles{x86) % \WinPcap\rpcapd.exe” d -f "“tProgramFiles{x86)%\WinPcap\rpcapd.ini®

Ready. Signed Microsoft Entries Hidden,

73

ThinkCyber | NX Malware Analysis

ProcDot

ProcDot is a robust tool designed for visual malware analysis. It analyzes debug output of Microsoft's
Sysinternals tool Procmon and generates an interactive graph showcasing the relationship between
different processes, file operations, and network activity. This provides a clear, visual representation
of the process flow and can drastically enhance the efficiency and understanding of malware analysis.

ProcDot integrates various data sources like logs from Procmon and PCAP files. It provides analysts
with the capability to visualize, navigate, manipulate, and animate the whole course of actions a
process performs, thus serving as a valuable tool for reverse engineering, incident response, and
forensic analysis.

Copyright (c) 2018 nic.at GmbH. and Christian Wojner
All rights reserved

Version 1.22 (Build 57u) Cerrs

The visualization provided by ProcDot helps in:

Understanding the process behavior and flow
Identifying process anomalies

Tracking file and registry modifications
Monitoring network activity

Using ProcDot for Malware Analysis
Before using ProcDot, you'll need data to analyze. This data often comes from a controlled malware
execution environment, or "sandbox". The most common data source is a Procmon log file.

1. Download and configure Procmon to include additional details such as Thread ID and enable
all events (Process, Thread, Registry, File System, Networking).

™) 3 Process Menitor Column Selection X I

File Edit Event Filter To{ Select columns to appear in the Process Monitor window:
E ‘ ra D\ @, ‘ q Application Details

Ol L4 ™= [Process Name [] Description
Time of Day] Process Name O Image Path [Version Result Detail TID

12:42:55.435829... 'py Explorer.EXE . {C...SUCCESS Desired Access: Query Value 332
1242:55.435840... ' Bxplorer EXE LSt (W) i IC.. NAME NOT FOUND Length: 144 112
12:42:55 435848 'y Explorer EXE [] Company Name \C...SUCCESS 312
12:42:55 448007... 'py Explorer. EXE SUCCESS Query: HandleTags, HandleTags 332
12:42:55448018... 'py Explorer. EXE Event Detail fC...SUCCESS Desired Access: Query Value 332
12:42:55.448030... 'y Explorer EXE vent Details \C..NAME NOT FOUND Length: 144 3312
i omepe | DowenceNumber Pt FSCOESS Guen: HardeTags,HondeT e

H ... 1 Explorer. . uery: HandleTags. HandleTags...
12:4255450115... 'r3 Explorer EXE [Jevent Class Letall Ic...success Desired Access: Query Value 3312
12:42:55.450126... 'r Explorer.EXE Operation Result \C...NAME NOT FOUND Length: 144 3Nz
12:42:55.450179... 'r Explorer EXE \C...5UCCESS 3Nz
1242:55.450790.. : Exglorer.ExE [Date &:Time [Relative Time SUCCESS Query: HandleTags, HandleTags... 312
12:42:55.450798... :|-| Explorer.EXE Time of Day [] Duration fC...SUCCESS Desired Access: Query Value 3z
12:42:55.450807... 'r Explorer.EXE IC...NAME NOT FOUND Length: 144 332
1242:55 430815, : Exglorer.ExE [Category [Completion Time Ic...succEss * 3312
12:42:55.467339... gy Explorer EXE SUCCESS Query: HandleTags, HandleTags 332
12:42:55 467353 ... 'y Explorer EXE Process Management fC...SUCCESS Desired Access: Query Value 312
12:42:55 467367... 'y Explorer EXE \C...NAME NOT FOUND Length: 144 3312
12:42:55 467377... 'y Explorer. EXE [User Name Process D \C.SUCCESS 1312
i foveepe| 0o EATheead CSUCESS Demed s Gy v e

H 7 ... 1 Explorer. esire cess: Query Value
12:42:55.467712... 'r Explorer. EXE [Authentication ID [JParent PID \C... NAME NOT FOUND Length: 144 312
12-42-RR 4R7721 e Funlarer FXF D\ntegrity I:l\fwtuahzed {C. SLICCFSS az
Showing 14,768 of 15,252 events (9

74

ThinkCyber | NX

Malware Analysis

2. Disable DNS resolving (uncheck)

I Process Monitor - Sysinternals: www.sysinternals.com - O *
File Edit Event Fitter Tools Help
rA Always on Toj
DR Y pe 2 «° [N
Time of Day Process Name Font.. Result Detail TID ~
12:42:55435829... ' Explorer EXE Highlight Colors... \Windows\(C... SUCCESS Desired Access: Query Value 3312
12:42:55.435840... ' Explorer EXE Theme b t\Windows\C...NAME NOT FOUND Length: 144 mz
12:42:55.435848... ' Explorer EXE Windows'\C... SUCCESS 3z
12:42:55.448007... :n Explorer EXE Configure Symbols... SUCCESS Query: Handle Tags. Handle Tags 3312
12:42:55.448078... 'p Explorer EXE Windows'\C... SUCCESS Desired Access: Query Value z
12:42:55.448030... 'ry Explorer EXE Select Calumns... \Windows\C.. NAME NOT FOUND Length: 144 3312
12:42:55.448040... ' Explorer EXE § \Windows\C... SUCCESS 3312
12:42:55 450104... 'y Explorer EXE History Depth... SUCCESS Query: HandieTags, Handle Tags 2312
12:42:55.450115... 'y Explorer EXE Profiling Events... WindowsA\C... SUCCESS Desired Access: Query Value 2
12:42:55.450126... ' Explorer. EXE \Windows\C...NAME NOT FOUND Length: 144 mz
12:42:55.450179... :|-| Explorer. EXE Enable Beot Logging WindowsA\C... SUCCESS 2
12:42:55.450790... 'p Explorer EXE SUCCESS Query: HandleTags, Handle Tags iz
12:42:55.450798... 'm Explorer EXE Show Resolved Network Addresses Crrl+N WWindows'\C... SUCCESS Desired Access: Query Value 3312
12:42:55.450807... ' Explorer EXE Windows\C...NAME NOT FOUND Length: 144 3z
12:42.55 4508716 ' Explorer EXE LAl B ST NEA Windows\C.. SUCCESS 3312
12:42:55.467339... 'p Explorer EXE Hex Process and Thread IDs SUCCESS Guery: Handle Tags, Handle Tags 3312
12:42:55.467353... 'p Explorer EXE t\Windows\C... SUCCESS Desired Access: Query Value 3312
12:42:55.467367... ' Explorer EXE 3512 WRegOuewVa\ue HKCM\Software\Microsoft\Windows\C... NAME NOT FOUND Length: 144 a2
12:42:55.467377... ' Explorer. EXE 3512 EfRegCloseKey HKCUMSoftware\Microsoft\Windows\C... SUCCESS 2
12:42:55.467680... ' Explorer. EXE 3512 EfRegQueryKey HKCU SUCCESS Query: Handle Tags, Handle Tags 2
12:42:55.467690... ' Explorer. EXE 3512 wRegOpenKey HKCUMSoftware\Microsoft\Windows\C... SUCCESS Desired Access: Query Value 2
12:42:55.467712... ' Explorer.EXE 3512 EﬁRegOuewV&\ue HKCUSoftware\Microsoft\Windows\C... NAME NOT FOUND Length: 144 z
124255 ART721 'em Funlorer FXF 3517 B ReaClnsaKey HKC I\ Saftware \Micrsaft\Windows\C - SLUCCFSS az e

3. Make sure "Enable Advanced Output" is selected in the Filter menu. This provides additional
details about events that can be helpful in your analysis.

¥ Process Monitor - Sysinternals: www.sysinternals.com - [m] X
File Edit Event Tools Options Help
Enable Advanced Output ol =
= & > R EED SN
Time of Day Prg ¥ Filter.. EIEE Path Resut Detal D ~
124255435629, ‘| ResetFilter iy HKCL\Scftware\ Microsoft\Windows'C... SUCCESS Desired Access: Guery Valug 212
124255435840 ‘mF Load Filter » Elue HKC LN\ Software\Microsoft\Windows\C...NAME NOT FOUND Length: 144 1312
12:42:55.435848... ',y | Save Filter. HKC LM Software\Microsoft\ Windows'C... SUCCESS 1312
12:42:55.448007... ' | By HKCU SUCCESS Query: Handle Tags, HandleTags... 2
12:42:55.448018.. | Organize Filters... HKCLI\Software\Microsoft \Windows\C.... SUCCESS Desired Access: Query Value 3312
12:42:55.448030... 'y | alue HKCU\Software\Microsoft \Windows\C... NAME NOT FOUND Length: 144 N2
12:42:55.448040.. B Drop Filtered Events. HKCL\Software\Microsoft\WindowsC... SUCCESS 3z
12:42:55.450104... ‘'m | HKCU SUCCESS Query: Handle Tags, HandleTags... 3312
12:42:55.450115.. B Z Highlight... Ctrl+H HKCLI\Software\Microsoft\WindowsC... SUCCESS Desired Access: Query Value 3z
12:42:55.450126... 'y . alue HKC U\ Software\Microsoft\Windows\C... NAME NOT FOUND Length: 144 3312
12:42:55.450179... py Explorer EXE 3512 [RegCloseKey HKCLI\Software\Microsoft \WindowsC... SUCCESS 3312
12:42:55.450790... ' Explorer.EXE 3512 WRegQuewKey HKCU SUCCESS Query: Handle Tags, HandleTags .. 32
12:42:55.450798... m Explorer.EXE 3512 H RegUpenkKey HKC LU\ Software\Microsoft\WindowsC... SUCCESS Desired Access: Query Value nz
12:42:55.450807... ' Explorer.EXE 3512 WRegQuewValue HKC LM Software\Microsoft\WindowsC... NAME NOT FOUND Length: 144 1312
12:42:55.450816... m Explorer.EXE 3512 wRegC\useKey HKC LU Software\Microsoft \Windows*C... SUCCESS 2
12:42:55.467339... ' Explorer EXE 3512 WRagﬁuewKay HKCU SUCCESS Query: Handle Tags. Handle Tags 3312
12:42:55.467353... 'y Explorer.EXE 3512 wReQODEnKey HKCU\Software\Microsoft \Windows\C... SUCCESS Desired Access: Query Value N2
12:42:55.467367... py Explorer EXE 3512 WRagQuewValue HKC LM Software\Microsoft\Windows“C... NAME NOT FOUND Length: 144 anz
12:42:55.467377... ' Explorer.EXE 3512 EfRegC\oseKey HKC U\ Software\Microsoft\Windows\C... SUCCESS 3312
12:42:55 467680... 'ry Explorer EXE 3512 [f RegQueryKey HKCU SUCCESS Query: Handle Tags, Handle Tags 1312
12:42:55.467690... ' Explorer.EXE 3512 E?RegOpenKey HKC U\ Software\Microsoft\Windows\C... SUCCESS Desired Access: Query Value 32
12:42:55.467712... ' Explorer.EXE 3512 H ReglueryValue HKC LU\ Software\Microsoft \WindowsC... NAME NOT FOUND Length: 144 nz
12-42-RR 4R7791 wm Funlorer FXF 3517 HF RenllnseKev HKC1 M Software\Miernsoft Windaws\C - SHICCFSS 312 o

4.

the log in CSV format.

Save To File

Events to save:

(O All events
(®) Events displayed using current

filter

A Alse include prefiling events

(O Highlighted events

Format:

Execute the malware in a controlled environment and capture the

logs with Procmon. Save

(0) Native Process Monitor Format (PML)
® Comma-Separated Values (C5V)
() Extensible Markup Language (XML)
Include stack traces (will increase file size)

Resolve stack symbols (will be slow)

Path: | C\Tools\ProcessMonitorLogfile. CSV

Cancel

75

ThinkCyber | NX Malware Analysis

Analyze with ProcDot
1. Launch ProcDot, and load the Procmon log file.

2. The analysis process will start, and once finished, it will display a graphical representation of
the process flow.

3. Use the mouse to navigate through the graph. Clicking on a node will display detailed
information about the event.

@ ProcDOT - C\Users\Malware\, procdot! default.pd* - m] X
File Edit View Filters Plugins ?
Monitoring Logs Render Corfiguration

(\ Procmon: ‘C' \Users'Malware'\Desktop'Logfile C5V ‘ [Launcher: |2306683715716I0ynamic1 exe
(CERTat Refresh

Windump: ‘ ‘ [ropaths [Jcompressed []dumb °%

B W« b = |0 w = = Emm w00 @

Status: OK Frame: 0/18 Time: 00:00:00 |Thread 189662 of process "Dynamic01.exe” (PID: 5716) loads file "C:\UsersMalware"Downloads -basicdynam\c'-.Dynam\cl

4. You can filter and sort the data, hide or highlight specific events, and adjust the graph's
appearance to suit your preferences.

The ability to visually follow the execution path makes it easier to understand the sequence of activities
and the overall behavior of the malware.

Best Practice for Analyzing with ProcDot

When using it with ProcDot, there are several key configurations that you should consider to achieve
the best results.

1. Setting up Filters
Exclude unnecessary data: To minimize the noise in the collected data, it's important to exclude
events that are not relevant to your analysis. You can exclude processes such as procmon.exe
itself and other unrelated processes that are running on your machine.
Include relevant data: Make sure you include the processes that you are investigating. If you

know the specific files, registry keys, or other elements that the process will interact with, add
them to the filter.

76

ThinkCyber | NX

2.

Malware Analysis

Drop Filtered Events

Normally, ProcMon keeps filtered events in memory in case you change your filters. If you are
sure of your filter and want to save memory, you can enable "Drop Filtered Events" in the Filter

menu.

¥ Process Menitor - Sysinternals: www.sysinternals.com m}
File Edit Event m Tools Options Help
rA Enable Advanced Output <> [
=E[CE g R BRI EHE
Time of Day Pre ¥ Fiter. Griel Path Resul Detai TID
12:42:55435829... ' ResetFilter Col+R 4y HKC U\ Software\Microsoft \Windows'C... SUCCESS Desired Access: Query Value 3312
12:42:55.435840, ! Load Filter b Elue HKCUNSoftware\Microsoft\Windows"\C...NAME NOT FOUND Length: 144 3312
12:42:55.435848... E Save Filter y HKC U\ Software \Microsoft \WindowsC... SUCCESS 3312
12:42:55.448007. ! EY HKCU SUCCESS Query: Handle Tags, Handle Tags 3312
12:42:55.448018.. 'n £ Organize Filters... ¥ HKC U Software \Microsaft\Windows'C... SUCCESS Desired Access: Query Valug 3312
12:42:55.448030. lue HKCU\Software\Microsoft\WindowsC...NAME NOT FOUND Length: 144 3312
12:42:55.448040... l Drop Filtered Events y HKC U Software \Microsoft \Windows\C... SUCCESS 3312
12:42:55.450104.... ey HKCU SUCCESS Query: HandleTags, HandleTags.. 3312
12:42:55.450115... E Z Highlight... Ctrl+H y HKC L Software \Microsoft \Windows\C... SUCCESS Desired Access: Query Value 3312
12:42:55.450126... o alue HKCUNSoftware\Microsoft\Windows"C... NAME NOT FOUND Length: 144 3312
12:42:55.450179... Explorer EXE 3512 WRagcluseKey HKC UM\ Software \Microsoft \Windows\C... SUCCESS 332
12:42:55.450790... ' Bxplorer EXE 3512 [RegQueryKey HKCU SUCCESS Query: HandleTags, HandleTags.. 3312
12:42:55.450798... Explorer EXE 3512 WREQOpenKey HKC U Software \Microsoft \Windows\C... SUCCESS Desired Access: Query Value 332
12:42:55.450807... ' Bxplorer EXE 3512 [RegQueryValue HKCUNSoftware\Microsoft\Windows'C... NAME NOT FOUND Length: 144 3312
12:42:55.450816... Explorer EXE 3512 WRagcluseKey HKC UM\ Software \Microsoft \Windows\C... SUCCESS 3312
12:42:55.467335... 'y Explorer EXE 3512 [RegQueryKey HKCU SUCCESS Query: HandleTags, HandleTags.. 3312
Explorer EXE 3512 EﬁHagOpenKey HKC U\ Software \Microsoft \Windows\C... SUCCESS Desired Access: Query Value 3312
Explorer. EXE 3512 [f RegQueryValue HKC L\ Software\Microsoft \Windows C... MAME NOT FOUND Length: 144 3312
Explorer EXE 3512 EﬁHagCluseKey HKC U\ Software \Microsoft \Windows\C... SUCCESS 3312
Explorer. EXE 3512 [j RegQueryKey HKCU SUCCESS Query: Handle Tags, HandleTags.. 3312
Explorer EXE 3512 EﬁﬁagOpenKey HKC UM\ Software \Microsoft \Windows\C... SUCCESS Desired Access: Query Value anz
- . Explorer. EXE 3512 [RegQueryValue HKC L\ Software \Microsoft \Windows\C... MAME NOT FOUND Length: 144 33z
12-42-R5 4R7721 Fxnlorer FXF 3517 B ReallnseKev HKCL N\ Software\Micrsoft \WindawsAC SLICCESS anz

3. Configuring Events to Capture

ProcMon can capture a wide range of events. However, you might not need all of them for
your analysis. Depending on the nature of the process you're analyzing, you may need to
adjust which events you capture. Typically, you would want to capture Process and Thread
Activity, File System Activity, and Registry Activity.

Saving the Data

To analyze the data with ProcDot, you need to save it in a format that ProcDot can understand.
ProcMon allows you to save your collected data in multiple formats, but for ProcDot, you'll
want to save it as a CSV file.

Enabling and Using Boot Logging

Some malicious processes start early in the boot process. To capture these, you might need to
enable boot logging. This will make ProcMon start at boot and log all activity.

77

ThinkCyber | NX Malware Analysis

Network Traffic Analysis for Malware Analysis

Understanding Network Traffic

Network traffic refers to the amount of data moving across a network at a given point of time. This
data is sent over the network in the form of packets, which are small chunks of data. Network traffic
can come from many different sources and serve various purposes, such as web browsing, email, file
transfers, and more.

Types of Network Traffic
There are various types of network traffic, including:

= Unicast: This is the most common type of network traffic, where one device sends data to
another device.

= Broadcast: One device sends data to all devices within a network.

= Multicast: One device sends data to a specific group of devices in the network.

Components of Network Traffic
Each packet of network data contains specific components:

= Source IP address: The IP address of the device sending the packet.

= Destination IP address: The IP address of the device receiving the packet.

= Payload: The actual data being transmitted.

= Header: Information about the packet, such as the source and destination IP addresses, and
details about the data in the payload.

Protocols in Network Traffic

Different protocols define how data is transmitted across a network. Some of the most common
include:

= TCP/IP: This is the most common network protocol, and it is used by the internet. It includes
multiple protocols, including IP, TCP, UDP, and ICMP.

= HTTP/HTTPS: These are used for web traffic. HTTPS is a secure version of HTTP.

= FTP: File Transfer Protocol, used for transferring files between devices.

= SMTP/POP3/IMAP: These are used for email traffic.

Analyzing Network Traffic

Network traffic analysis involves capturing and inspecting network traffic to identify any issues or
potential threats. For example, an unusually high amount of traffic could indicate a denial of service
(DoS) attack, while traffic to a known malicious IP address could indicate a device has been infected
with malware. By analyzing network traffic, we can detect anomalies, identify patterns consistent with
malware activity, and understand the nature of network interactions.

78

ThinkCyber | NX Malware Analysis

Wireshark

As a malware analyst, you are frequently tasked with dissecting threats, understanding their nature,
and developing defenses. A crucial component of your tool kit is Wireshark, a highly sophisticated,
open-source network protocol analyzer. This tool provides a comprehensive window into the complex
web of data traffic, facilitating in-depth analysis of malware's network communication. Network
analysis with Wireshark can be a complex task, and it's important to follow best practices to ensure
accurate and effective analysis.

Basic Packet Filtering

While Wireshark's ability to capture all network traffic is invaluable, it can also be overwhelming when
searching for a malware's footprint. This is where Wireshark's filtering capabilities come into play.

You can filter packets using Wireshark's display filters and capture filters. Display filters, as the name
suggests, filter the display of captured packets. For example, if you want to see only DNS traffic, you
can apply a display filter like dns, and Wireshark will only show DNS packets.

Exercise: Set up a sandbox environment and run a sample malware. Use Wireshark to capture the
network traffic it generates. Can you identify any suspicious activities?

& Capturing from Ethernetd - [m| X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
md® RERe=2F 5EaqQqi
[|-.33 y a display filter ... <Ctrly/> '] +
Mo, Time Source Destination Protocol Length Info ~
49 9.226935 162.125.21.2 192.168.1.172 TCP 66 [TCP Window Update] 443 =+ 56539 [ACK] Seq=1 Ack=11827 W
5@ 9.226935 162.125.21.2 192.168.1.172 TCP 66 [TCP Window Update] 443 -+ 56539 [ACK] Seq=1 Ack=11827 W

51 9.226935 162.125.21.2 192.168.1.172 TCP 66 [TCP Window Update] 443 + 56539 [ACK] Seq=1 Ack=11827 W

54 9.419261 -125.21. TCP 66 443 -+ 56539 [ACK] Seq=1 Ack=12387 Win=888 Len=@ SLE=

55 9.420293 162.125.21.2 192.168.1.172 TCP 6@ 443 » 56539 [ACK] Seq=1 Ack=26525 Win=894 Len=@

56 9.429742 162.125.21.2 192.168.1.172 TLSv1.2 918 Application Data

57 9.472384 192.168.1.172 162.125.21.2 TCP 6@ 56539 + 443 [ACK] Seq=26525 Ack=857 Win=1825 Len=08

9 11.678438 2a8d:6Tc@:8d2:d78@:.. 2001:4035:4400:4::5.. TCP 74 58182 » 443 [RST, ACK] Seq=2 Ack=1 Win=@ Len=@

v
£ >

Frame 1: 6@ bytes on wire (488 bits), 6@ bytes captured (488 bits) on interface ‘\DevicellN 18 c@ 4d eb 95 ad d4 35 1d 5c fc 97
Ethernet II, Src: Technico Sc:fc:97 (d4:35:1d:5c:fc:97), Dst: Giga-Byt_eb:95:ad (18:c@:4d @@ 28 31 of 4@ @8 33 86 9c ec a2 7d

81 ac @1 bb dd 57 1@ 1c ff of 44 7d

Internet Protocol Version 4, Src: 162.125.21.3, Dst: 192.168.1.172
eose [ENEE 69 1f @@ @0 b8 ae b3 d6 b3 bl

Transmission Control Protocol, Src Port: 443, Dst Port: 56663, Seq: 1, Ack: 1, Len: @

£ > € >
O 7 Ethernet0: <live capture in progress = Packets: 60 - Displayed: 60 (100.0%:) Profile: Default

Visualizing Network Traffic with Wireshark

Visualizing network traffic with Wireshark is a powerful technique for gaining insights into the behavior
and structure of network traffic.

Graphing Features

Wireshark provides several powerful graphing features that can be used to visualize network traffic.
These features include the I/O graph, the packet rate graph, and the TCP stream graph.

79

ThinkCyber | NX Malware Analysis

The I/O graph displays the input and output traffic on a selected network interface over time, allowing
you to visualize the traffic patterns and identify potential bottlenecks or issues.

The packet rate graph displays the number of packets per second on a selected network interface over
time, allowing you to visualize the traffic patterns and identify potential spikes or drops in traffic.

The TCP stream graph displays the TCP traffic patterns between two hosts, allowing you to visualize
the flow of traffic and identify potential issues such as slow response times or packet loss.

M Wireshark . /0 Graphs « Ethernetd — [m} >

Wireshark IfO Graphs: Ethernetd

600
500
3 400 [
g
2 300
]
o
200 - I
100 F . I | ' |
SRR o b JAL LA RLALD L
o [daeudbnhnfln ¥ 0.2, PP PO LT L | L S L O T L[WAL L] Yy b 3]
1 1 1 1 1 1 1 1
0 100 200 300 400 500 500 700
Time (g)
Hover over the graph for details,
Enabled Graph Mame Display Filter Color Style Y Axis ¥ Field SMA Period ¥ A
TCP Errors tcp.analysis.flags . Bar Packets Mone 1
v
< >
+ | [—| |t E‘g Mouse (®) drags (C) zooms Interval 1sec [Time of day [Log scale Automatic Update Reset

Save As... Copy Copy from Help

Protocol Hierarchy Pane

The protocol hierarchy pane in Wireshark provides a powerful tool for visualizing the structure and
behavior of network traffic. The protocol hierarchy pane displays a breakdown of the protocols used
in each packet, allowing you to visualize the traffic patterns and identify potential issues or anomalies.
By using the protocol hierarchy pane to visualize the traffic patterns and the structure of the network
traffic, you can gain insights into the behavior of the network and identify potential security threats,
performance issues, or other anomalies.

M Wireshark - Protocol Hierarchy Statistics - Ethernetd — [m] >
Protocal v Percent Packets Packets Percent Bytes Bytes Bits/s EndPackets EndBytes EndBi”
~ Frame 100.0 20395 100.0 15557049 163k O]]

~ Ethemet 100.0 20395 19 303304 3182 0]]
~ Logical-Link Control 1.9 382 0.1 14516 152 0]]

Spanning Tree Protocol 1.9 382 01 13370 140 382 13370 140
~ Internet Protocol Version & 64.0 13048 34 521960 477 0 0 0
~ User Datagram Protocol 5.6 1135 01 9080 95 0 o o

QUIC IETF 48 998 4.1 642089 6747 998 603339 6331
Multicast Domain Name System 0.0 10 0.0 582 & 10 582 &
Link-local Multicast Mame Resolution 0.0 1 0.0 28 0 1 28 0

Domain Name Systermn 0.6 124 0.1 9615 00 124 9615 100

DHCPvE 0.0 2 0.0 139 1 2 139 1 ©
< >
No dispisy fiker.

80

ThinkCyber | NX Malware Analysis

Colorization Rules

Wireshark provides a powerful colorization feature that allows you to color-code packets based on
specific criteria. By using colorization rules to highlight packets that match specific criteria, you can
quickly identify potential issues or anomalies in the network traffic.

For example, you could use colorization rules to highlight packets that contain HTTP errors, or to
highlight packets that are associated with a specific IP address or port. By using colorization rules to
highlight packets that match specific criteria, you can quickly identify potential issues and take
appropriate action.

£ Wireshark . Coloring Rules Default X

Name Filter «

ate |= 16

HTTP http || tep.port == 20 || http2

DCERPC dcerpec

1 Reutina hsro |l giarp || osof || bap || cdo I vrre 1l care |l avro [liamo [lismo he
< >
Double dlick to acit. Drag to move. Rules sre processad in order until 2 match is foune,

+ = BB

Copy from = Cancel Import. Export. Help

Use a Filter

When analyzing network traffic with Wireshark, it's important to use a filter to isolate the packets that
are related to your analysis. Using a filter will help you focus on the packets that are relevant to your
analysis, and make it easier to identify potential issues or anomalies.

Capture Only What You Need

When capturing network traffic with Wireshark, it's important to capture only what you need.
Capturing too much traffic can result in large capture files that are difficult to analyze, and can lead to
performance issues on the capture machine.

Organize Your Analysis Workflow

Organizing your analysis workflow is an important best practice for network analysis with Wireshark.
By establishing a clear and consistent workflow, you can ensure that your analysis is accurate and
efficient.

Understand Protocol Behavior

To effectively analyze network traffic with Wireshark, it's important to understand the behavior of the
protocols being used. By understanding the behavior of the protocols, you can identify potential issues
and anomalies that could impact network performance or security.

81

ThinkCyber | NX Malware Analysis

Visualize the Traffic

Visualizing network traffic with Wireshark is an important best practice for network analysis. By
visualizing the traffic, you can identify potential patterns or anomalies that could be impacting network
performance or security.

Keep Wireshark Up to Date

It's important to keep Wireshark up to date with the latest updates and patches. Wireshark is a
powerful tool that is constantly evolving, and keeping it up to date will ensure that you have access to
the latest features and bug fixes.

Advanced Filtering Techniques

1. IP Address Filtering

A common task in malware analysis is identifying suspicious IP addresses. With Wireshark, you can
create a display filter for a specific IP address, such as ip.addr == 192.168.1.1, or a range of IP
addresses.

To identify a particular host communicating with an IP, you can use a combined filter, such as
ip.addr == 192.168.1.1 && ip.addr == 192.168.1.2. This filter will display only the packets where
both these IP addresses are either source or destination.

2. Protocol Filtering

Malware often uses specific protocols to communicate with its command and control servers.
Wireshark allows you to filter traffic based on protocol types. For example, to filter HTTP traffic,
you could use the http display filter. For more specific analysis, you can filter by HTTP methods:
http.request.method == "POST".

3. DNS Query Filtering

Malware often uses domain generation algorithms (DGA) to evade detection. These generate
numerous domain names that the malware could potentially communicate with. Wireshark's
dns.qry.name filter can help detect such behavior. By applying this filter and observing a large
number of queries to non-existent domains, an analyst can suspect DGA activity.

4. Payload Filtering

Malware often hides data in packet payloads. Analysts can filter on the content of the payload
using Wireshark. For example, to find HTTP GET requests containing a specific user agent, you
could use a filter like http contains "User-Agent: suspicious-agent".

Detecting Beaconing

Beaconing is a technique used by malware to signal its presence to its command and control servers.
It involves sending regular, often encrypted, traffic between the infected host and the command and
control servers. This traffic can often fly under the radar of IDS/IPS due to its regularity and small size.
To detect beaconing with Wireshark, an analyst can look for regular, outbound traffic from a host. A

conversation filter, such as ip.addr == 192.168.1.1 && tcp, can help identify this traffic. If the same size
and destination packets appear at regular intervals, it may indicate beaconing activity.

82

ThinkCyber | NX

Main Wireshark Filters

Malware Analysis

This table provides an overview of 25 common Wireshark filters and their descriptions. These filters
can help you quickly focus on specific aspects of network traffic during analysis, making the process
more efficient and effective.

No. | Wireshark Filter Description

1 ip.addr == Xx.X.X.X Filter by IP address

2 ip.Src == X.X.X.X Filter by source IP address

3 ip.dst == x.x.X.X Filter by destination IP address

4 tcp.port == xx Filter by TCP port

5 udp.port == xx Filter by UDP port

6 tcp.flags.syn == 1 && tcp.flags.ack == Filter for TCP SYN packets

7 tcp.flags.reset == Filter for TCP RST packets

8 http.request.method == "GET" Filter for HTTP GET requests

9 http.request.method == "POST" Filter for HTTP POST requests

10 | dns.gry.name == "example.com" Filter for DNS queries for example.com

11 | wlan.sa == XX:XX:XX:XX:XX:XX Filter by WLAN source MAC address

12 | wlan.da == XXXXXXXXXX:XX Filter by WLAN destination MAC address

13 | icmp Filter for all ICMP packets

14 | ssIOR'tls Filter for all SSL/TLS packets

15 | (ip.src == x.x.x.X) && (ip.dst == y.y.y.y) Filter for traffic between two IP addresses

16 | ip.addr == x.x.x.x && tcp.port == xx Filter for traffic with specific IP address and
TCP port

17 | frame.number == x Filter by frame number

18 | frame.len >=x Filter for packets with a minimum length of x
bytes

19 | frame.len <=x Filter for packets with a maximum length of x
bytes

20 | http.cookie contains "example" Filter for HTTP packets containing the text
"example" in the cookie

21 | ftp.request.command == "USER" Filter for FTP requests with the USER
command

22 | dns.flags.response == Filter for DNS response packets

23 | tcp.analysis.retransmission Filter for TCP retransmissions

24 | tcp.analysis.duplicate_ack Filter for duplicate TCP acknowledgements

25 | (tcp.flags.syn == 1) && (tcp.flags.ack == 1) Filter for TCP SYN-ACK packets

83

ThinkCyber | NX Malware Analysis

Useful Knowledge in Analyzing Network Traffic
* Finding the Default Gateway

When analyzing a pcap file, there are a few ways you might be able to identify the IP address
of the default gateway (which is often a router, but not always):

1. Look for ARP (Address Resolution Protocol) Packets: Devices will often send an ARP
request to determine the MAC address of the default gateway. You can filter for ARP
packets in the pcap file. The IP address associated with the MAC address identified as the
gateway in these ARP packets is often the default gateway.

2. Check ICMP (Internet Control Message Protocol) Redirect Messages: Routers often send
ICMP Redirect messages to tell hosts to use a different gateway. If any such messages are
present in the pcap file, the IP address of the sender (source IP) is likely the IP of a router,
potentially the default gateway.

3. Look for DHCP (Dynamic Host Configuration Protocol) Messages: If the pcap file captured
the device's network initialization process, it might contain DHCP messages. The DHCP
Offer and Acknowledgement (ACK) messages from the DHCP server often include the
default gateway's IP address as part of the network configuration information.

network01pcap

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

ADA® s BE@ 2« « >0 «>B E o8 of#

N |dhcp

No. Time Source Destination Protocol Length Info
208 10.576868 192.168.198.149 192.168.198.254 DHCP 356 DHCP Request - Transaction ID Oxale2fc8b
209 10.580577 192.168.198.254 192.168.198.149 DHCP 342 DHCP ACK - Transaction ID @xale2fc8b

d
00 10 11
4

00 00 0O GO 0O 68
00 00 00 00 0O 0O
00 00 0@ 00 0O
08 0 08 0o

e Type (ACK)
Identifier (192.168.198.254)

C- 5cb- -6

® E Option 3: Router (dhcp.option.router), 4 bytes Packets: 1186 - Displayed: 2 (0.2%) Profile: Default

4. Check for Traceroute or Ping Packets: If the pcap file includes a traceroute operation, or
pings to a multicast address, the IP address of the first hop will likely be the default
gateway.

84

ThinkCyber | NX Malware Analysis

= |dentify any Potential SQL Injection Attempts

Analyzing a pcap file for potential SQL injection attempts requires deep packet inspection to
look for SQL keywords and suspicious patterns in the payload of the packets. SQL Injection is
typically an attack against a web application, so it's most likely to be found in HTTP requests,
specifically in the URI, GET parameters, POST data, or even in HTTP headers such as cookies.

1. Filter HTTP Traffic: First, you would need to filter for HTTP traffic. This can be done by
entering http into the filter bar in Wireshark.

2. Search for Suspicious Patterns: Look for any suspicious patterns or payloads in the HTTP
request URI, GET parameters, and POST data. This is usually where the SQL Injection
happens. Some things to look for include SQL commands like SELECT, INSERT, DROP,
DELETE, and so on. Other telltale signs might include --, which is a comment in SQL and is
often used in SQL Injection attacks to comment out the rest of the SQL statement to
prevent syntax errors.

3. Use http.request.method == "GET" or http.request.method == "POST" filters: To make
your task easier, you can use these filters to isolate only HTTP GET or POST requests, which
are the types of requests most likely to contain SQL Injection attempts.

4. Use Follow TCP Stream: Wireshark allows you to follow a TCP stream. This can be helpful
to see the full exchange between the client and server for a particular connection.

= |dentify TCP port Scanning Activities

When analyzing a pcap file for TCP port scanning activities, you are looking for evidence of a
system sending a large number of packets to various ports to see if they are open. Here are
some typical signs of a port scan:

1. Increase in SYN packets: A common technique used in port scanning is the SYN scan
(or half-open scan). The scanner sends a SYN packet as if it is going to open a full TCP
connection but then stops after the target responds. Therefore, seeing a large number
of SYN packets from one source to multiple destination ports may indicate a port scan.

2. Host scanning multiple ports: If you see a single host sending packets to multiple ports
on another host, it could indicate that a port scan is in progress.

3. Sequential ports being accessed: If the ports are being accessed in a sequential
manner (for example, 1, 2, 3, 4, and so on), it may be a sign of a port scan.

4. Use of rarely-used ports: If the scan includes attempts to connect to ports that are
rarely used, it may be an indicator of a port scan.

5. Incomplete TCP connections: Port scans often involve sending TCP SYN packets but

not completing the three-way handshake (by not sending the final ACK packet). This is
known as a SYN scan or half-open scanning.

85

ThinkCyber | NX

Malware Analysis

6. Multiple resets (RST packets): A large number of TCP RST packets from various

destination ports may indicate that a port scan is occurring.

To do this in Wireshark:

1.
2.

Open the pcap file in Wireshark.
Set the filter to tcp.flags.syn == 1 && tcp.flags.ack == 0 to show SYN packets.

= |dentify Potential Distributed Denial of Service (DDoS) Activity.

Detecting Distributed Denial of Service (DDoS) activity in a pcap file involves looking for
unusual patterns of network traffic. DDoS attacks typically involve a large number of requests
or connections coming from many different sources, aimed at overwhelming a target server
or network. Here are some typical signs of a DDoS attack:

1.

High Volume of Traffic: One of the clearest indicators of a DDoS attack is an abnormally
high volume of network traffic, especially if it's concentrated over a short period of
time.

Many Requests From Different IPs: In a Distributed Denial of Service attack, the traffic
often comes from many different source IP addresses. If you see a large number of
packets coming from a wide range of different IPs, it might be a sign of a DDoS attack.

Multiple Requests to a Single Destination: If you see a large number of packets or
connections directed at a single target IP address or a single target port, this might
indicate a DDoS attack.

Repeated Requests: If the same request is being repeated from multiple IPs, it could
be a sign of a DDoS attack.

Traffic Spikes: Sudden spikes in traffic can indicate a DDoS attack, especially if the
traffic volume drops off quickly after the spike.

Here are some steps that can be used with Wireshark, a common network protocol analyzer:

1.

Endpoint Settings

Copy

Protocol
Bluetooth
DCCP

Create Statistics: Go to Statistics -> Conversations or Statistics -> Endpoints to view
traffic patterns between specific IPs. You can sort by packet count or byte count to
identify potential targets of a DDoS attack.

Wireshark - Endpoints - networkO1.pcap

Ethernet-12 IPv4.25 |Pv6-7 TCP-36 UDP-31

Address Packets « Bytes Tx Packets Tx Bytes Rx Packets Rx Bytes Country City AS Number
192.168.198.149 1,133 1154 MiB 228 25.509 KiB 905 1129 MiB
Limit to display filter 192.168.198.135 908 1.075 MiB 787 1.064 MiB 121 167 KB
74.125.224.149 70 25.507 KiB 19.996 KiB 30 551 KiB
173.194.64.84 29 19.016 KiB 17.373 KiB 10 1.643KiB
74.125.224.41 20 15.292KiB 14.504 KiB 7 807 bytes

199.7.57.72 4.383 KiB 3.381KiB 10 1.002KiB
173.194.79.103 5.670 KiB 4.435KiB 1.235KiB
74.125.224.181 4.727 KiB 3.658 KiB 1.068 KiB
8.8.8.8 1.610 KiB 1.090 KiB 533 bytes
199.7.48.72 2.185KiB 1.690 KiB 517 bytes
199.7.51.72 2.191KiB 1.690 KiB 513 bytes

ME Me M7 1an 171 vin T11 e EAD hartae

86

ThinkCyber | NX

2.

=]
o
o

Packetsf1 sec

Malware Analysis

Use 10 Graphs: The |0 Graph (Statistics -> |0 Graphs) can help visualize traffic patterns
over time. You might see a significant spike in traffic during a DDoS attack.

Wireshark - 1/O Graphs - network01.pcap

Wireshark /O Graphs: network01.pcap

Time (s)

Hover over the graph for details.

Enabled Graph Name Display Filter Color Style Y Axis Y Field SMA Period Y Axis Facto
v Filtered pac... tcp.flags.sy... Line Packets None 1

+ — @m [@ Mouse ° drags zooms Interval 1sec - Time of day Logscale v Automatic Update Reset

3.

Save As... Copy Close Help

Use Filters: Wireshark allows you to filter based on IP address, TCP, UDP, ICMP and
many other parameters, which can help narrow down the traffic you are looking for.

= |dentify Potential Command and Control (C2) Communication

1.

Filter for Common C2 Protocols: C2 traffic can be disguised to look like regular traffic,
but it typically uses certain protocols. Common protocols used for C2 traffic include
HTTP(S), DNS, IRC, and custom TCP/UDP protocols. Filter the traffic in your pcap file
by these protocols.

Look for Anomalies: C2 communication often involves some type of anomaly or
suspicious pattern. Look for these types of things:

a. Repeated communication to a single IP address: While it's normal for computers
to repeatedly communicate with certain IP addresses (like a default gateway),
frequent communication with an unrecognized IP address might be a sign of a C2
server.

b. Large data transfers: Large uploads (data sent from the compromised system to
the C2 server) can be a sign of data exfiltration.

c. 0dd DNS requests: Look for frequent requests to a single domain or requests to

domains with unusual or randomized names. Attackers sometimes use DNS as a
covert communication channel.

87

ThinkCyber | NX

Malware Analysis

d. Unusual timing of the traffic: For example, traffic occurring at odd hours or in
noticeable patterns can be a sign of C2 activity.

3. Analyze Payloads: If the traffic is not encrypted, you might be able to gain insights

from the payloads of the packets. Look for command-like strings or encoded data.

Check the Geo-location of IP Addresses: It's a common practice for attackers to host
their C2 servers in countries where they're less likely to be taken down. Thus, if you
notice a lot of traffic to and from a country that you wouldn't normally be
communicating with, it might be a sign of C2 traffic.

Compare with Threat Intelligence: You can use various threat intelligence tools and
databases to check whether the IP addresses or domains you're communicating with
are associated with known threats. Some examples of these are VirusTotal,
ThreatMiner, AlienVault's OTX, etc.

= |dentify Phishing Attempts

Detecting phishing attempts in a pcap file involves identifying suspicious patterns in the
network traffic, such as visiting known phishing sites or transmitting sensitive information over
unsecured protocols. Here are some steps to guide you:

Filter for HTTP and HTTPS traffic: Start by filtering for HTTP and HTTPS traffic as
phishing often happens over these protocols. In the filter bar at the top of the
Wireshark window, type "http" or "https" and press Enter.

Look for GET requests to known phishing sites: If you have a list of known phishing
sites, look for HTTP GET requests to these sites. Attackers often try to trick users into
visiting these sites and entering their personal information.

Inspect suspicious HTTP POST requests: Phishing attacks often involve the victim
unknowingly sending information to the attacker (such as login credentials, credit card
numbers, etc.). These are often sent via HTTP POST requests. If you see an HTTP POST
request to a suspicious or unfamiliar site, it might be a sign of a phishing attempt.

Examine the Host and URI fields: The Host and URI fields in the HTTP header can often
provide clues about phishing attacks. Look for any domains that appear to be
impersonating legitimate sites, especially if they're slightly misspelled or use
alternative top-level domains (e.g., ".com" vs ".net").

Check for unsecured data transmission: If you see sensitive data (such as passwords
or credit card numbers) being transmitted over an unencrypted connection (HTTP
instead of HTTPS), this could be a sign of a phishing attempt.

Use threat intelligence databases: Tools like VirusTotal, ThreatMiner, and AlienVault's
OTX can provide information on known phishing URLs and IP addresses. You can cross-
reference the domains and IP addresses found in the pcap file with these databases
to identify potential phishing attempts.

88

ThinkCyber | NX

Malware Analysis

Identify Patterns of Advanced Persistent Threat (APT) Activity

Advanced Persistent Threats (APTs) are complex, often state-sponsored cyber-attacks that
persist over a long period, aiming to steal, spy, or disrupt activities. They're usually highly
targeted and sophisticated, leveraging a mix of different tactics and evasion techniques.

Here are some common signs or patterns of APT activity:

Unusual Network Traffic: This could be traffic at odd times, an increased amount of
traffic, or traffic to/from strange locations. An APT often communicates with its C2
(command and control) server.

Repeated Login Attempts: APTs often attempt to gain higher-level access to make it
easier to navigate and achieve their goal.

Indicator of Compromise (loC): Anomalous files or system behavior can suggest a
system compromise. These include but are not limited to unrecognized processes,
unexpected data bundles, irregularities in system logs, and unaccounted network
connections.

Presence of Malware: Often, APTs utilize custom, previously unseen malware. This
includes Remote Access Trojans (RATs), keyloggers, or other types of spyware.

Data Exfiltration: A sudden and unexplained increase in data transfers could indicate
data is being sent outside the network.

Zero-day vulnerabilities: APTs often exploit zero-day vulnerabilities—flaws in software
that are unknown to the software developers.

Spear Phishing Attacks: APTs often use targeted phishing attacks, known as spear-
phishing, to get initial access to the target network.

Use of Known Tools: APTs often use tools already present on the system for malicious
purposes, such as PowerShell or WMI.

Identify Lateral Movement in the Network

To detect lateral movement in a network using a pcap (packet capture) file, you need to focus
on the patterns and signs indicative of this behavior. Here's a general process you might follow,
using a network protocol analyzer like Wireshark:

1.

Look for Anomalies in Communication Between Hosts: Pay special attention to
communications between hosts within the same network. Lateral movement involves
an attacker moving from one host to another, so you would want to check for unusual
or unexpected communication between hosts.

Identify Unusual Protocols and Ports: Lateral movement often involves the use of
protocols like SMB (Server Message Block), RPC (Remote Procedure Call), RDP
(Remote Desktop Protocol), and SSH (Secure Shell). Look for traffic using these
protocols, and check whether it's expected for your network.

89

ThinkCyber | NX

Malware Analysis

Check for Multiple Failed Logins Followed by a Success: This could indicate an
attacker using brute-force or password spraying attacks to gain access to another
system on the network.

Scan for Network Scanning or Enumeration: Techniques like ARP scanning, ICMP
sweeping, or attempts to list and query shared resources, are often used by attackers
to discover other hosts in the network.

Investigate Suspicious or Repeated Access to Admin Shares: Access to admin shares
(like CS or ADMINS) or frequent use of tools like PsExec can also indicate lateral
movement attempts.

Check for Kerberos Golden/Silver Ticket Activities: In Windows environments,
unusually high counts of Kerberos TGT (Ticket Granting Ticket) requests or evidence of
Kerberos protocol anomalies could indicate Golden or Silver Ticket attacks, which are
often used in lateral movement.

Use of Tools and Commands for Lateral Movement: Look for signs of tools often used

in lateral movement, like Mimikatz, or commands used for remote execution, like at,
schtasks, psexec, etc.

90

ThinkCyber | NX Malware Analysis

TCPDump

TCPdump is an open-source packet sniffer that operates on a command-line interface. It allows users
to capture or 'sniff' network traffic on the wire, which can then be analyzed for various purposes. For
malware analysts, tcpdump's value lies in its ability to capture packets that can reveal how a particular
malware is behaving, what data it is sending, or what command and control servers it communicates
with.

TCPdump uses the libpcap library to capture network traffic, and its functionality can be extended
using Berkeley Packet Filter (BPF) syntax to create complex and powerful capture filters.

Hands-on Examples
Step 1: Set Up a Controlled Environment.

Step 2: Use tcpdump to begin capturing network traffic. Choose the interface using the -D flag.

BN Administrator: Command Prompt — O x

Domain

Step 4: Execute the Malware. Run the Malware and observe the network traffic it generates.

Step 5: Analyze the Traffic. Look for any suspicious activities such as frequent connections to a specific
IP, unusual data transfer, or use of uncommon ports.

Step 6: Document and Analyze. Record your observations and analyze Delta's network behavior.

91

ThinkCyber | NX

Malware Analysis

TCPDump Packet Capturing Options

Flag Syntax Description

-i any tcpdump -i any Capture from all interfaces

-i ethO tcpdump -i ethO Capture from specific interface (Ex EthQ)

-C tcpdump -i ethO -c 10 Capture first 10 packets and exit

-D tcpdump -D Show available interfaces

-A tcpdump -i eth0 -A Print in ASCII

-W tcpdump -i ethO -w tcpdump.txt | Save capture to a file

-r tcpdump -r tcpdump.pcap Read and analyze saved capture file

-n tcpdump -n -i eth0 Do not resolve host names

tcp tcpdump -i ethO tcp Capture TCP packets only

port tcpdump -i ethO port 80 Capture traffic from a defined port only
host tcpdump host 192.168.1.100 Capture packets from specific host

net tcpdump net 10.1.1.0/16 Capture files from network subnet

src tcpdump src 10.1.1.100 Capture from a specific source address

dst tcpdump dst 10.1.1.100 Capture from a specific destination address
<service> | tcpdump http Filter traffic based on a port number for a service
<port> tcpdump port 80 Filter traffic based on a service

port range | tcpdump portrange 21-125 Filter based on port range

-S tcpdump -S http Display entire packet

ipv6 tcpdunp -IPV6 Show only IPV6 packets

-d tcpdump -d tcpdump.pcap Display human readable form in standard output
-F tcpdump -F tcpdump.pcap Use the given file as input for filter

-l tcpdump -l ethO Set interface as monitor mode

-L tcpdump -L Display data link types for the interface

-K tcpdump -K tcpdump.pcap Do not verify checksum

-p tcpdump -p -i eth0 Not capturing in promiscuous mode

Logical Operators

Operator | Syntax Example Description
AND and, && | tcpdump -n src 192.168.1.1 and dst | Combine filtering options

port 21
OR or tcpdump dst 10.1.1.1 or icmp Both conditions will be displayed
EXCEPT not, ! tcpdump dst 10.1.1.1 and not icmp | Negation of the condition
LESS < tcpdump <32 Shows packets size less than 32
GREATER | > tcpdump >=32 Shows packets size greater than 32

Display / Output Options

Switch | Description

-q Quite and less verbose mode display less details
-t Do not print time stamp details in dump

-v Little verbose output

-wv More verbose output

92

ThinkCyber | NX Malware Analysis

NetworkMiner
NetworkMiner is a popular open-source network forensic analysis tool designed to capture, analyze,
and extract evidence from network traffic. It is used by network administrators, security professionals,

and digital forensics experts to parse pcap files and perform live traffic analysis on both wired and
wireless networks.

Features of NetworkMiner:
e Passive network sniffing
Pcap file parsing and analysis
Protocol analysis, including HTTP, FTP, SMB, and SMTP
File extraction and reconstruction
Host and user identification
Connection and session analysis
GeolP mapping
0OS and browser fingerprinting
Encryption detection

Installation

Visit the official NetworkMiner website and download the latest version.
https://www.netresec.com/?page=NetworkMiner

To capture live network traffic using NetworkMiner, follow these steps:

1. Run NetworkMiner as an administrator (Windows) or with root privileges (Linux).
2. Click on the 'Interfaces' tab.

3. Select the network interface you want to capture traffic from.

4. Click the 'Start' button to begin the capture.

&Y NetworkMiner 2.8 - O it

File Teols Help

WinPcap: Intel(R) 82574L Gigabit Network Connection {0.0.0.0) {4D33B1D2-CE38-4B8C-ABCA-CFDBIAGADTAL}
Anomalies Case Panel
Hosts (11} Files Images Messages Credentials Sessions (5) DNS (7) Parameters (11) Keywords Flename MD5

Filter: | | String ~ | | Clear Apply NM_202...

Sort Hosts On: | IP Address (ascending) w Sort and Refresh

JE 138.159.52.32 ~

1 192.168.1.189

0 149.154.167.91

i 192.168.1.172

i 2a0d:6c0:8d2:2c00:e5e6:283:2614:4913

i 2a00:1450:4028:301::2003

i 192.168.1.1

/i 13.226.2.114 [d27xxe Tjuh 1us6.cloudfrant net] [zonfig extension grammary.com]
13.226.2 52 [d27xe 7 56 cloudfro [config ext]
+ 13.226.2.120 [d2
... 11 ¥2C 261 [4F

w Reload Case Files

Buffered Frames to Parse:

93

https://www.netresec.com/?page=NetworkMiner

ThinkCyber | NX Malware Analysis

To analyze pcap files with NetworkMiner, follow these steps:

1. Launch NetworkMiner.
Click 'File' > 'Open' in the menu bar.
3. Browse to the location of the pcap file and open it.

~

“ MetworkMiner 2.8
File Tools Help

— Select a network adapter in the list — ~ Stop

Hosts (357) Files (730} Images Messages (1} Credentials (41) Sessions (14859) DNS (1280) Parameters (19210) Keywords Anomalies Coacd

Fil MD5
Filter: | | String ~| | Clear Apply ilename

network... 72chla.
Sort Hosts On: | IP Address (ascending) v Sort and Refresh

+,{t 10.6.15.93 [DEKSTOP-A1CTIVY local] [DEKSTOP-AICTIVY] (Windows)

5 [saltmobsters-dc saltmobsters com] (Windows)

168.62.57.154 [skynedaaprdcoleusﬁcloudapp.net] [eelf-events-data trafficmanager net] [seff events data microsoft com]
0::1c01b22b 837 e

10.6.15.187 [DESKTOP-YSEFZ2G local] [DESKTOP-YSEFZ2G] [desktopys6iz2g] (Windows)
10.6.15.119 [DESKTOP-NIEESLP local] [DESKTOP-NIEESLP] [desktop-niee%p] (Windows)
+- gl 52.242.211.89 [wns notify trafficmanager.net] [client. wns.windows com]

<

Buffered Frames to Parse: [N

4. Navigating the Tabs:

e Hosts: Displays information about hosts detected in the network traffic, such as IP addresses,
hostnames, and operating systems.

o Files: Lists all files extracted from the network traffic, including images, documents, and
executables.

e Messages: Shows email, chat, and social media messages found in the network traffic.

[]

Sessions: Provides an overview of network sessions and their associated metadata.
o DNS: Presents DNS queries and responses extracted from the network traffic.
Parameters: Lists HTTP GET and POST parameters, as well as FTP commands and responses.

Anomalies: Displays potential security issues, such as unusual traffic patterns or protocol
anomalies.

Techniques for Network Traffic Analysis

Analyzing network traffic involves several techniques, each suitable for different scenarios. These
techniques include:

1. Packet Analysis: This involves examining the individual packets of data that are sent across a
network.

2. Flow Analysis: This technique examines the 'flow' of traffic between network hosts.

Log Analysis: This involves examining log entries from devices such as routers, firewalls, and
servers to identify patterns or detect anomalies.

Statistical Analysis: This technique involves looking at network traffic statistically to identify
patterns or anomalies.

94

ThinkCyber | NX Malware Analysis

SSL/TLS Traffic Decryption and Inspection

Introduction to SSL/TLS

SSL was developed by Netscape Communications Corporation in the mid-1990s to secure web traffic,
specifically to protect communication between web browsers and servers. At a time when the Internet
was expanding rapidly, the need for a secure protocol to safeguard sensitive data being transmitted
over this network became apparent. This was the impetus behind the creation of SSL.

The initial version of SSL, known as SSL 1.0, was never publicly released due to severe security flaws.
Netscape then promptly developed and released SSL 2.0 in 1995. This version, while an improvement,
still had significant security issues. In response to these vulnerabilities, Netscape made considerable
improvements and released SSL 3.0 in 1996.

Birth of TLS

In 1999, the Internet Engineering Task Force (IETF), an open standards organization, took over the
protocol to standardize it. They made several changes to SSL 3.0 and released it as TLS 1.0. The primary
motivation for these changes was to address the security issues that persisted in SSL 3.0 and to develop
a protocol that would be widely accepted and implemented across the Internet.

While TLS 1.0 is technically a new version, it's largely similar to SSL 3.0 and even maintains backward
compatibility. However, the name change represented the shift in control of the protocol's
development from a single company (Netscape) to an open standards organization (IETF).

Evolution of TLS

Since the release of TLS 1.0, the protocol has undergone several revisions to improve security and add
new features:

e TLS 1.1 (2006): Introduced to address several vulnerabilities in TLS 1.0, including protection
against Cipher Block Chaining (CBC) attacks.

e TLS 1.2 (2008): Added authenticated encryption and support for more secure hash functions
like SHA-256.

e TLS 1.3 (201 3): Represents a significant update, simplifying the protocol and increasing
security. It reduces the number of round trips required for the handshake process, removes
support for insecure and obsolete features, and enforces the use of forward secrecy, among
other improvements.

95

ThinkCyber | NX Malware Analysis

SSL/TLS Handshake Process
The SSL/TLS process begins with what is known as a "handshake". This series of exchanges between
client and server establishes the parameters of the secure session:

1. ClientHello: The client sends a list of supported cipher suites and a random number
(ClientRandom).

2. ServerHello: The server responds with the chosen cipher suite, another random number
(ServerRandom), and the server's digital certificate. This certificate contains the server's public
key.

3. Client Verification and Key Exchange: The client verifies the server's certificate with a
Certificate Authority (CA). If the certificate is valid, the client uses the server's public key to
encrypt a new random number (PreMaster Secret) and sends it to the server.

4. Shared Secret Generation: Both client and server use the PreMaster Secret and the previously
exchanged random numbers to compute the same symmetric session key, also called the
"master secret".

5. At The End: Both sides exchange messages to confirm that the handshake was successful and
that the session will now continue using the symmetric key for encryption.

Understanding SSL/TLS Encryption Algorithms
Symmetric Encryption

Symmetric encryption, also known as secret-key encryption, involves the use of a single key for both
encryption and decryption of data. This key is shared between the communicating entities during the
SSL/TLS handshake process. Symmetric encryption is relatively fast and efficient, making it suitable for
encrypting large amounts of data.

Examples of symmetric encryption algorithms used in SSL/TLS include:

1. Advanced Encryption Standard (AES): It is the most widely used symmetric encryption
algorithm due to its high level of security and efficiency. AES supports key sizes of 128, 192, or
256 bits.

2. Triple Data Encryption Standard (3DES): An older algorithm that applies the older Data
Encryption Standard (DES) algorithm three times to each data block. It is considered less
secure than AES and is typically used only when necessary for compatibility with older systems.

Asymmetric Encryption
Asymmetric encryption, or public-key encryption, uses two different but mathematically linked keys:

one private and one public. The public key is used to encrypt data, and the corresponding private key
is used to decrypt it.

96

ThinkCyber | NX Malware Analysis

Asymmetric encryption is typically slower than symmetric encryption but provides a practical way to
solve the key distribution problem (i.e., securely providing the encryption key to the party that needs
to decrypt the data).

In the context of SSL/TLS, asymmetric encryption is primarily used during the handshake to securely
establish the symmetric key that will be used for the remainder of the session. Examples of asymmetric
encryption algorithms include:

1. RSA (Rivest-Shamir-Adleman): This was the first practical public-key encryption algorithm and
is widely used in SSL/TLS for key exchange.

2. Diffie-Hellman (DH): This algorithm allows two parties, each having a public-private key pair,
to establish a shared secret key over an insecure channel. This shared secret can then be used
as the key for a symmetric encryption algorithm.

3. Elliptic Curve Diffie-Hellman (ECDH): This is a variant of the Diffie-Hellman protocol that uses
elliptic curve cryptography. It provides the same functionality as Diffie-Hellman but is more
efficient and secure.

Hashing Algorithms
In addition to encryption algorithms, SSL/TLS protocols also use hashing algorithms to ensure data
integrity. A hashing algorithm transforms input data into a fixed-size string of characters, which is a

hash value.

Hashing is used in the creation of digital signatures and message authentication codes (MACs) to verify
data integrity and authenticity. Examples of hashing algorithms used in SSL/TLS include:

1. Secure Hash Algorithm (SHA): The family of SHA algorithms, including SHA-0, SHA-1, SHA-2,
and SHA-3. Of these, SHA-1 is now considered insecure and is being phased out in favor of

SHA-2 and SHA-3.

2. Message Digest Algorithm 5 (MD5): An older algorithm that is no longer considered secure
against determined attacks.

97

ThinkCyber | NX Malware Analysis

SSL/TLS Decryption with Wireshark

To inspect your own encrypted SSL/TLS traffic via Wireshark, you can use a method where the web
browser logs SSL session keys to a file. These keys can then be used in Wireshark to decrypt the SSL/TLS
traffic. This process is possible with Firefox and Chrome.

Here's how you can do it:
1. Setup the Environment Variable

a. Press the Windows key, type "Environment Variables", and press Enter.

(] [i&] Filters “v

Best match

Lﬂ Edit the system environment variables

Control panel
Settings
3 £dit environment variables for your account
Search suggestions

L envi - see web results

L2 envi] [5]

b. Click on "Environment Variables" in the System Properties window.

System Properties x
Computer Name Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes

Performance

Visual effects, processor scheduling, memory usage, and virtual memory

Settings
UserProfiles
Desktop settings related to your sign-in
Settings...
Startup and Recovery
System startup, system failure, and debugging information
Seftings

Environment Variables...

OK Cancel Apply

98

ThinkCyber | NX Malware Analysis

c. Click on "New" under User variables.

d. Set "SSLKEYLOGFILE" as the Variable name and provide a full path to the log file where you
want to save the keys as the Variable value, e.g., "C:\Users\<username>\Desktop\keys.log".

User variables for Malware

Variable Value
ChocolateylastPathUpdate 133187320071319284
ChocolateyToolsLocation C\Tools

OneDrive C\Users\Malware\OneDrive
Path C\Users\Malware\AppData\Local\MicrosoftiwindowsApps;C...
PSModulePath C\Users\Malware\Documents\WindowsPowerShell\Modules
TEMP CA\Users\Malware\AppData\Local\Temp
New User Variable X
Variable name: ‘ SSLKEYLOGFILE ‘

Variable value: C:\Users\Malware\Desktop\keys.log ‘
Browse Directory... Browse File. Cancel

[ComSpec C\Windows\system32\cmd.exe
NUMBER_OF_PROCESSORS 2
os ‘Windows_NT
Path C\Python39\Scripts\;C:\Python39y;C:\Python2 7\;C:\Python27\S...
PATHEXT COM;.EXE; BAT;.CMD;.VBS;.VBE; JS;.JSE, WSF, WSH; MSC, PY, PYW "
New... Edit.. Delete

OK Cancel

e. Click "OK" and "Apply" to save the settings.
2. Restart your Browser

Close your browser completely, including all tabs and windows, then re-open it. Only sessions
initiated after setting the environment variable will be logged.

3. Collect the Session Keys

Use the browser to access the site you're interested in. The browser will automatically append
session key data to the log file you specified each time it establishes a new SSL/TLS session.

wl M = | Desktop - o X
Home Share View o
« v 4 m > ThisPC > Desktop ~ Q) | Search Desktop »p
~ Name Date modified Type Size

7 Quick access

Desktop =l keyslog 5/19/2023 10:25 PM Text Document 13 KB
=

Downloads
%] Documents

= Pictures

= This PC
» 3D Objects
m Desktop
%] Daocuments

& Downloads

1item =]

99

ThinkCyber | NX Malware Analysis

4. Decrypting SSL/TLS Traffic:

Once you have your log file, you can use it in Wireshark to decrypt captured traffic:

a. Open Wireshark, go to Edit > Preferences.
b. Inthe Preferences window, expand Protocols.
c. Scroll down and select TLS.
d. Inthe (Pre)-Master-Secret log filename field, provide the path to your SSLKEYLOGFILE.
M The wire etwork Analzer = O >
‘ Wireshark - Preferences X
48 @ TDMoE ~ Transport Layer Security =
Apply a display filter ... <d TDMoP =3 -]+
108 RSA keys list Edit...
TeamSpeak2 RSA keys list (deprecated) ‘
e Teane. TS debug e
Ope Teredo | Browse...
CATo TETRA Reassemble TLS records spanning multiple TCP segments
TP Reassemble TLS Application Data spanning multiple TLS records
I::ad [[] Message Authentication Code (MAC), ignore "mac failed"
Cap Thrift Pre-Shared Key ‘
usin Tibia (Pre)-Master-Secret log filename
I:IIA:HCE |C:\Users\Ma\ware\Dasktap\keys.lag ‘ | Browse... |
TiVoConnect
LS
TNS
Token-Ring
Lea TPCP
User', TPKT v
Youar | € >
oK Cancel Help
Ready to load or captu [T U PaCKe { Profile: Default

Now, Wireshark is able to decrypt SSL/TLS traffic that was captured while the browser was writing keys
to the file.

M “Ethemeto - U x
1 M Wireshark - Packet 29805 - Ethernet0 - O x
A
@ Frame 29805: 93 bytes on wire (744 bits), 93 bytes captured (744 bits) on interface \Device\NPF_{4D33B] [+ ssl
Mo Ethernet II, Src: VMware 57:dc:b7 (8@:0c:29:57:dc:b7), Dst: VMware f3:fe:73 (00:50:56:13:fe:73) A
Internet Protocol Version 4, Src: 192.168.140.134, Dst: 172.217.22.19
Transmission Control Protocel, Src Port: 49835, Dst Port: 443, Seq: 1420, Ack: 10648818, Len: 39
Transport Layer Security
HyperText Transfer Protocol 2
I < >
0000 00 00 08 07 00 LALLM 0 00 60 00 60 00 00 E== 4
[55]
E W
A
[>] 3 00
0 80
b 34
0 17
Frame (93 bytes) Decrypted TLS (17 bytes) 57
e
d 4c
Show packet bytes
>
< >| Frame (93 bytes) Decrypted TL 4 b

O 7 wireshark_Ethernet07UCES1.peapng Packets: 46399 - Displayed: 8405 (18.1%) * Dropped: 0 (0.0%)| Profile: Default

100

ThinkCyber | NX Malware Analysis

SSL/TLS Decryption with SSLsplit

SSLsplit is a tool for man-in-the-middle attacks against SSL/TLS encrypted network connections. It's
quite potent for network debugging, analysis, and penetration testing.

Here is a step-by-step guide on how to perform SSL/TLS decryption with SSLsplit:

1. A Linux machine: This will act as the intercepting machine. We'll use Kali Linux as it comes
with SSLsplit preinstalled.

2. A target machine: This could be any device that you have permission to test, such as your
personal computer, laptop, or smartphone.

3. Network setup: Both the intercepting machine and the target device should be connected to
the same network.

Steps

1. Install SSLsplit

While SSLsplit comes preinstalled with Kali Linux, you can install it manually if needed:

sudo apt-get install sslsplit

2. Create a new CA certificate

Next, generate a self-signed CA certificate and private key. SSLsplit will use this certificate to intercept
and decrypt SSL traffic.

mkdir -p /root/ca/

cd /root/ca/

openssl genrsa -out ca.key 4096

openssl req -new -x509 -days 1826 -key ca.key -out ca.crt

kali@kali: ~/Desktop

File Actions Edit View Help

~/Desktop
genrsa ca.key 4096

~/Desktop

enssl req 1826 ca.key ca.crt
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:|}

101

ThinkCyber | NX

3. Install the new CA certificate on the target machine

Malware Analysis

The ca.key and ca.crt files are respectively a private key and a certificate, which can be used for SSL/TLS
encryption and verification. In Windows, you can install these certificates in the certificate store using
the Microsoft Management Console (MMC):

1. Press Windows + R, type mmc in the Run dialog, and click OK. This will open Microsoft
Management Console.

2. Inthe Console, go to File > Add/Remove Snap-in (or press Ctrl+M).

3. Inthe Add or Remove Snap-ins window, select Certificates in the list of Available snap-ins, and
then click the Add > button.

&
i File Action View Favorites Wi
bl dllicl B

_| Censole Root

Add or Remove Snap-ins

YYou can select snap-ins for this console from those available on your computer and configure the selected set of snap-ins. For extensible

snap-ins, you can configure which extensions are enabled.

Available snap-ins: Selected snap-ins:
Snap-in Vendor | Console Root
') ActiveX Control Microsoft Corp...
[Ed nuthorization Manager Microsoft Corp...
ﬁl Microsoft Corp...
%. Component Services Microsoft Corp...
A Computer Managem... Microsoft Corp...
M Device Manager Microsoft Corp...
=¥ Disk Management Microsoftand ... Add >
{2] Event viewer Microsoft Corp...
| Folder Microsoft Corp...
=/ Group Policy Object ... Microsoft Corp...
8, 1P Security Monitor Microsoft Corp...
3, 1P Security Policy Ma... Microsoft Corp...
(=] Link to Web Address Microsoft Corp...
& Local Users and Gro... Micrasoft Corp...
= Mnnitns _ Mirenenfs e
Description:

The Certificates snap-in allows you to browse the contents of the certificate stores for yoursef a service, or a computer.

X

- & X
Edit
Actions
Remove
Console Root a
Mare Actions 4
Move Up
Move Down
Advanced...

4. Inthe Certificates snap-in window, select Computer account (if you want to manage certificate
for the whole system) and click Next.

@
i File Action View Favorites Wir
=@ = BmE

_| Console Root

Certificates snap-in

| O My user account

© Servics account

® Computer account

This snap-in will always manage cettficates for:

< Back

Cancel

ff snap-ins. For extensible

The Certificates snap-in allows you to browse the contents of the certificate stores for yourself, a service, or a computer.

- 8 X
Edit
Actions
Remove
Console Root —
More Actions »
Move Up
Move Down
Advanced...
oK Cancel

5. Inthe Select Computer window, leave Local computer: (the computer this console is running
on) selected, and click Finish.

102

ThinkCyber | NX Malware Analysis

6. Click OK in the Add or Remove Snap-ins window to return to the main Console.
7. Inthe Console, expand the Certificates (Local Computer) entry in the left pane.

8. Right-click on Trusted Root Certification Authorities, go to All Tasks, and then click on Import....

’:h“ Console1 - [Console Root] - [m] x
E File Action View Favorites Window Help - & X%
= @ = HE
v [Certificates (Local Computer) || Name Actions
Personal 15 Certificates (Local Computer) Console Root -
O Truste '~ 7
Enter Find Certificates.. More Actions 4
il Interm All Tasks ’ Find Certificates..
Truste
7 Untru New Window from Here Import...
Third- Bt T
| Truste eires
Client, Help

| Preview BuroROOTS |
eSIM Certification Authoritie:

_| Homegroup Machine Certific
Certificate Enrollment Reque

| Smart Card Trusted Roots
Trusted Devices

- Windows Live ID Teken Issue

< >

Contains actions that can be performed on the item.

9. Inthe Certificate Import Wizard, click Next.

10. In the File to Import page, click Browse... and navigate to the location of your ca.crt file. You
might need to change the file type filter to All Files (*.*) in order to see your file.

11. After selecting the ca.crt file, click Next.

X
.* Certificate Import Wizard L
B
; File Action View Favorites Window Help - 8 X
File to Import
3 il
@%@ = ﬂ [Specify the file you want to import.
v Ap)] Certificates (Local Computer) ~ || Name Actions
Personal ol Certificq Console Root -
_| Trusted Root Certification Au File name:
More Actions »
Enterprise Trust C:\Users\Malware\Desktop\ca.crt Browse...
~| Intermediate Certification Au
Trusted Publishers o o o
“| Untrusted Certificates Note: More than one certificate can be stored in a single file in the following formats:
Third-Party Root Certificatior Personal Information Exchange- PKCS #12 (.PFX,.P12)
- Trusted People o hic Me: Syntax Standard- PKCS #7 Certificates (.P7B)
Client Authentication Issuers Cryptographic Message Syntax Standard- s (P78)
_| Preview Build Roots Microsoft Serialized Certificate Store (.SST)
eSIM Certification Authoritie:
_| Homegroup Machine Certific
| Certificate Enrollment Reque
_| Smart Card Trusted Roots
| Trusted Devices
| Windows Live ID Token Issue
< >
Next Cancel

12. In the Certificate Store page, leave Place all certificates in the following store selected with
Trusted Root Certification Authorities, and click Next.

13. Click Finish to complete the wizard. You should see a message saying "The import was
successful."

103

ThinkCyber | NX Malware Analysis

4. Set up IP forwarding and iptables rules

You need to enable IP forwarding to route all traffic through the intercepting machine. Additionally,
set iptables rules to redirect SSL traffic to the port where SSLsplit is listening.

echo 1> /proc/sys/net/ipv4/ip_forward
iptables -t nat -F

iptables -t nat -A POSTROUTING -j MASQUERADE
iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-port 8080
iptables -t nat -A PREROUTING -p tcp --dport 443 -j REDIRECT --to-port 8443

e echo 1> /proc/sys/net/ipva/ip_forward: This command enables IP forwarding on the system.
When IP forwarding is enabled, the system can pass incoming network packets to another
system. This is typically used when you want to turn your system into a router, where it will
take packets it receives and send them on to their intended destination. Here echo 1 is writing
the value 1 to the file /proc/sys/net/ipv4/ip_forward, which controls the IP forwarding setting.

e iptables -t nat -F: This command flushes (clears) all existing rules in the "nat" table of the
iptables configuration. iptables is the standard firewall used by most Linux systems. The "nat"
table is used to set up Network Address Translation (NAT) rules, which allow the system to
map one IP address space into another.

e iptables -t nat -A POSTROUTING -j MASQUERADE: This command appends a rule to the "nat"
table in the "POSTROUTING" chain. The -j MASQUERADE option tells iptables to mask the
source IP address of outgoing packets with the IP address of the outgoing interface. This is
typically used when you want to allow a system on a private network to communicate with
the outside world, and the system's internal, private IP address is not routable on the public
internet.

e iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-port 8080: This command
appends a rule to the "nat" table in the "PREROUTING" chain. It specifies that any incoming
TCP packets destined for port 80 should be redirected to port 8080 instead. This could be used,
for example, if you have a web server running on port 8080, but you want to make it accessible
from the standard HTTP port (80).

e iptables -t nat -A PREROUTING -p tcp --dport 443 -j REDIRECT --to-port 8443: This command
is similar to the previous one, but it sets up a redirect from port 443 (the standard HTTPS port)
to port 8443. This could be used if you have a web server running on port 8443, but you want
to make it accessible from the standard HTTPS port (443).

These commands collectively would turn a Linux system into a kind of router, capable of forwarding

traffic and translating network addresses. They also configure port redirection, which can be useful for
making services accessible on non-standard ports.

104

ThinkCyber | NX Malware Analysis

5. Run SSLsplit

Now, you're ready to start SSLsplit. The following command will start SSLsplit in debug mode, log all
output to the console, and use the previously created CA certificate.

mkdir /tmp/sslsplit/
mkdir logdir

sslsplit -D -l connections.log -j /tmp/sslsplit/ -M ssl|_key_logfile -S logdir/ -k /root/ca/ca.key -c /root/ca/ca.crt ssl 0.0.0.0
8443 tcp 0.0.0.0 8080

e sslsplit: This is the command to start the tool.
e -D: This option is for debug mode. It enables verbose logging.
e -| connections.log: This specifies a log file where all connections will be logged.

e -j/tmp/sslsplit/: This option specifies the directory where SSLsplit will chdir (change directory)
to after the startup. This is useful when running SSLsplit as a daemon, using -d.

o -M ssl_key_logfile: This option enables logging of master keys in the format used by the
SSLKEYLOGFILE environment variable of various browsers. This can be used to decrypt packet
captures.

e -Slogdir/: The -S option specifies the directory for storing content log files for each connection.
SSLsplit creates one file per connection in this case, containing all data transferred over the
connection as a single file. If a connection carries multiple SSL connections over its lifetime (as
is the case with SSL/TLS session resumption or with connection reuse in HTTP-based
protocols), all of them get logged into the same file.

e -k ca/ca.key -c ca/ca.crt: These flags are used to specify the private key and certificate that
will be used to perform the man-in-the-middle attack. These will be used to impersonate the
real servers and re-encrypt the traffic after it has been intercepted and possibly logged. In this
case, the key file is /root/ca/ca.key and the certificate file is /root/ca/ca.crt.

e ss| 0.0.0.0 8443 tcp 0.0.0.0 8080: This is the specification of what kinds of connections to
intercept and where to listen for them. The ssl 0.0.0.0 8443 part means that it will intercept
SSL traffic on all network interfaces (0.0.0.0) at port 8443. The tcp 0.0.0.0 8080 part means
that it will intercept TCP traffic on all network interfaces at port 8080.

6. Set up the intercepting machine as the gateway

On the target device, change the network settings to use the intercepting machine as the gateway. This
will vary by device and OS, so ensure to look up the specific instructions for your target device.

105

ThinkCyber | NX Malware Analysis

Internet Protocol Version 4 (TCP/IPv4) Properties X
General

You can get IP settings assigned automatically if your network supports
this capability, Otherwise, you need to ask your network administrator
for the appropriate IP settings.

(O Obtain an IP address automatically

(® Use the following IP address:

IP address: 192 . 168 . 140 . 139
Subnet mask: 255.255.255. 0
Default gateway: 192 . 168 . 140 . 132

(® Use the following DNS server addresses:
Preferred DNS server: 8 .8.8 .8

Alternate DNS server:

D validate settings upon exit Advanced...

7. Test the setup

At this point, all SSL traffic from the target device should be routed through the intercepting machine
and decrypted by SSLsplit. To test the setup, try browsing HTTPS sites on the target device. You should
see the SSL traffic in the SSLsplit console on the intercepting machine.

root@kali: ~

File Actions Edit View Help

SSL disconnected from [192.168.140.139]:50319

SSL_free() in state 00000001 = @001 = SSLOK (SSL negotiation finished successfully) [
accept socket]

SSL_free() in state 00000001 = @001 = SSLOK (SSL negotiation finished successfully) [
connect socket]

SSL disconnected to [142.251.37.67]:443

SSL disconnected from [192.168.140.139]:50320

SSL_free() in state 00000001 = @001 = SSLOK (SSL negotiation finished successfully) [
accept socket]

Garbage collecting caches started.

Garbage collecting caches done.

Remember to reset all changes to their original state after your testing. This includes network settings
on the target device and IP forwarding/iptables rules on the intercepting machine.

echo 0 > /proc/sys/net/ipv4/ip_forward

iptables -t nat -F

In addition, remove the CA certificate from the target device to prevent further trust.

106

ThinkCyber | NX Malware Analysis

SSL/TLS Decryption for Incident Response and Forensics

During a security incident, the ability to inspect encrypted network traffic can provide invaluable
insights into the nature of the attack, the affected systems, and the extent of the damage. Incident
response teams can leverage SSL/TLS decryption to:

1. Identify Indicators of Compromise (loCs): SSL/TLS decryption can help reveal malicious
command and control communications or data exfiltration attempts.

2. Establish a timeline of events: Decrypting network traffic allows teams to identify when a
compromise may have first occurred.

3. Attribute the attack: SSL/TLS decryption might yield clues about the perpetrators, such as IP
addresses, domain names, or specific malware signatures.

SSL/TLS Decryption in Digital Forensics

In the aftermath of a security incident, digital forensics experts often need to decrypt SSL/TLS traffic
as part of their investigations to:

1. Recover Evidence: Decryption can unveil evidence critical to understanding how an attack was
conducted.

2. Analyze Malware: Malware often uses SSL/TLS encryption. Decrypting this traffic can provide
insight into the malware's operation.

Example: SSL/TLS Decryption in Incident Response

Consider a scenario where an organization's intrusion detection system (IDS) alerts the security team
about potential command and control (C2) traffic. The traffic is encrypted with SSL/TLS, making it
challenging to understand the potential threat.

1. Capture Traffic: The team captures the network traffic for further analysis.

2. Decrypt Traffic: Using the organization's private keys, the security team uses a tool like
Wireshark to decrypt the SSL/TLS traffic.

3. Analyze Traffic: Post decryption, the team can see the contents of the communication,
confirming it as C2 traffic. The team now has useful information about the malware, such as

the C2 server's address and the commands being sent.

Exercise: Assume you're part of an incident response team dealing with a security incident. Write down
the steps you'd take, highlighting where SSL/TLS decryption might be beneficial.

Exercise: Using a PCAP file, practice using Wireshark to inspect network traffic. Focus on identifying
potentially suspicious encrypted traffic.

Exercise: Experiment with SSLsplit in a controlled and ethical environment. Analyze how it can be used
in real-world incident response scenarios.

107

ThinkCyber | NX Malware Analysis

Memory Analysis for Malware Analysis

Overview of Memory Analysis

Memory analysis is a powerful technique in malware analysis and incident response, used to gain
insight into the behavior and intentions of a malicious program. It involves the examination of a
system's volatile memory (RAM) to identify signs of compromise or suspicious activity. Memory
analysis can provide a wealth of information about running processes, open network connections,
loaded modules, and more, which might not be evident from disk-based analysis.

Basics of Memory Analysis

Malware often operates in a system's memory to avoid detection from disk-based security solutions.
It can perform malicious activities, like hiding processes, injecting code into other running processes,
and maintaining persistence, without leaving any trace on the hard disk.

Memory analysis involves capturing a snapshot of the system's RAM, typically in the form of a memory
dump. Tools like Volatility can analyze these memory dumps, providing insight into the state of the
system at the time of the snapshot. For instance, they can list the running processes, identify network
connections, or extract malware binaries.

Exercise: Capture a Memory Dump
For this task, we will use a tool called WinPmem to capture a memory dump from a Windows system.

Follow these steps:
1. Download WinPmem from the official repository.

2. Run the executable as administrator.
3. Select the destination file for the memory dump.

E¥ Administrator: Command Prompt - O X

>winpmem mini dump . mem

The resulting file is a snapshot of your system’s memory, ready to be analyzed.

Process Analysis
One of the primary uses of memory analysis in malware investigations is to examine running processes.

Malware often injects malicious code into other processes to disguise its activities. By investigating
each process and its associated memory space, you can often uncover such injections.

108

ThinkCyber | NX Malware Analysis

Memory Acquisition Techniques
Memory acquisition is a critical first step in malware analysis and digital forensics. The objective is to
collect a snapshot of a system's volatile memory (RAM) for further investigation.

Overview of Memory Acquisition

Memory acquisition is the process of capturing a copy of the physical or virtual memory of a computer
system. It aims to retain the most accurate snapshot of the system's state at a particular moment. This
snapshot, also known as a memory dump or memory image, is then used for analysis.

Physical Memory: This is the actual RAM (Random Access Memory) installed on your computer. It's a
finite resource, and it's where your programs and data reside when they're actively being used.
Physical memory is much faster to access than disk storage. When an operating system is running a
program, the binary data of that program (and any data it's using) are loaded into physical memory.

Virtual Memory: This is a technique that operating systems use to extend the apparent amount of
physical memory available, and to isolate processes from each other. Each process running on your
computer sees a "virtual" address space that it believes is all its own. These addresses are then
translated to physical memory addresses by the hardware and the operating system. If the system runs
out of physical memory, it can use a section of the hard drive as a kind of "overflow" space. This area
is called the "swap" space or "page file".

Virtual memory has several benefits:

1. Process Isolation: Virtual memory ensures that each process has its own private address
space, which enhances the security and stability of the system. This means that a bug in one
program can't corrupt the data of another program, and programs can't access the memory
used by the operating system.

2. Effective Memory Management: Virtual memory allows the system to use physical memory
more efficiently. Parts of a program's memory that aren't currently in use can be temporarily
moved to the hard drive, freeing up physical memory for other programs. When the original
program needs that data again, it can be moved back into physical memory.

3. Simplified Programming: Because each program gets its own private address space,
programmers can write code without having to worry about where in physical memory their
data will end up. This makes programming much simpler.

Using virtual memory can also have downsides. Accessing data in the swap space is much slower than
accessing data in physical memory, so if a system has to "swap" data frequently because it's low on
physical memory, this can significantly slow down the system. This situation is often referred to as
"thrashing".
Memory Acquisition Techniques
Several techniques can be used to acquire memory from a system:

1. Hardware-based acquisition: In this technique, a hardware device is used to capture memory.

These devices are often connected to the system via the FireWire port and are generally more
reliable but can be expensive and difficult to use.

109

ThinkCyber | NX Malware Analysis

2. Software-based acquisition: In this method, a software tool is used to acquire the memory.
These tools are often more user-friendly and cheaper than hardware-based methods but can
potentially be detected or blocked by malware.

Live vs. Dead Memory Acquisition

Memory acquisition can occur while the system is running (live acquisition) or after it has been
powered off (dead acquisition). Live acquisition has the advantage of capturing volatile data that could
be lost when the system is powered off, but there's a risk of altering the system state. Dead acquisition,
on the other hand, doesn't pose a risk of modifying the system state but may not capture all relevant
data.

Secure Memory Acquisition
To maintain the integrity of the acquired memory and ensure the reliability of your analysis, it's
important to follow best practices for secure memory acquisition. These include:

1. Using trusted and validated tools: Make sure you're using reliable and tested memory
acquisition tools to minimize the risk of memory corruption or manipulation.

2. Ensuring non-volatile storage: Store the acquired memory images on non-volatile and secure
storage media to prevent data loss or tampering.

3. Documenting the acquisition process: Maintain a detailed log of your actions during the
acquisition process, including the time, the used tool, the system state, and any anomalies or
errors encountered.

Exercise: Documenting a Memory Acquisition
1. Conduct a memory acquisition using the previously mentioned Dumplt tool.
2. Document your process, including the time, the steps you followed, and any issues you
encountered.
3. Store the memory image and your documentation securely.

Volatility

The analysis of a system's memory can yield invaluable insights when investigating potential malware
threats. Several specialized tools have been developed to assist in this process, making it more
accessible and manageable.

Overview of Memory Analysis Tools
Memory analysis tools provide the means to dig deep into a system's memory, extracting vital
information about running processes, network connections, and other system activities. This data can

be used to identify suspicious or malicious behavior that may not be apparent through other forms of
analysis.

110

ThinkCyber | NX Malware Analysis

Volatility 3

Volatility 3 is an open-source memory forensics framework that allows investigators to extract digital
artifacts from volatile memory (RAM) and analyze them for incident response, malware analysis, and
other investigations.

Installation

You can download Volatility 3 from the official GitHub repository:

git clone https://github.com/volatilityfoundation/volatility3.git
cd volatility3

pip3 install -r requirements.txt

Volatility 3 is written in Python, so you'll need a Python environment to run it. If you don't have Python
installed, you can install it with a package manager like apt for Ubuntu:

sudo apt install python3 python3-pip

Identifying the Profile

In Volatility 3, profiles are handled automatically and you do not need to specify them manually as in
Volatility 2. If you do want to manually set a profile, you can use windows.info.Info to identify the
correct profile:

EH Select C\Windows\System32\emd.exe — [m] »

rnlmp.pdb/B6

111

ThinkCyber | NX Malware Analysis

Basic Commands
Here are some basic commands for memory analysis:
1. List processes:

python vol.py -f dump.mem windows.pslist.PsList

B¥ C\Windows\System32\cmd.exe — [m])

PPID ImageFileName Offse 5 s d Wow64 CreateTime ExitTime File out]

@eeeee N/A Disabled
©:07.800000

.beceoe

SMSS.exe . becooe

e

. 660008 Disabled
wininit.exe X b 2 5 :088. 000000
. BBEa6E6

winlo X F 6 a 2 . Bebooe

python vol.py -f dump.mem windows.psscan

EX C:\Windows\System32\cmd.exe - python vol.py -f dump.mem windows.psscan - m} X

-t dump.mem windows.p:
nning finished
1 Thr s Handles Sessionld bl 4 Time File out]
A Disabled
.B888ee
. BBEB66

. 6068066

python vol.py -f dump.mem windows.pstree

E C\Windows\System32\cmd.exe — m])

-f dump.mem windows.pstree

ning finished
Th Handles SessionId W : CreateTime ExitTime
. 888886

2 E . BeBEe6
SMSS.exe C als 5 :08.008000

xe 13] E - 8068686

1logon . exe - a E :B8. 008000
. Be06806

2. List network connections:

python vol.py -f dump.mem windows.netscan.NetScan

112

ThinkCyber | NX Malware Analysis

Bl C:\Windows\System32\cmd.exe — m] x®

on vol. -f dump.mem windows.net

ished
Foreigni

LISTENIN

STENING

python vol.py -f dump.mem windows.netstat

EX C:\Windows\System32\cmd.exe - O *

-f dump.mem windows.netstat

g finished
ForeignAddr Ouwner Created

abe: B 443 ESTABLISHED
60 . 6000060
L1411 : c d BLISHED 2 host.exe
.Be0e80
7@ TC s = o \ ynamic
.Boe888
-85

3. List command history (for cmd.exe):

python vol.py -f dump.mem windows.cmdline.CmdLine

B C\Windows!System32\cmd.exe - m] X

Required memo
Required
Required
Required
Requir

winlogon.exe
services.exe

4. Listloaded DLLs for a specific process:

python vol.py -f dump.mem windows.dlllist.DllIList --pid <PID>

Bl Select C\Windows\System32\emd.exe — O 4

PDB s
Name

es.exe Disal
@peeee Disabled

113

ThinkCyber | NX Malware Analysis

Advanced Commands
Here are some more advanced commands:
1. Extracting dump files:

python vol.py -f dump.mem -o <outputDir> windows.memmap.Memmap --pid <PID> --dump

B C\Windows\System32icmd.exe - m} X

TTTTDTDTTT

o

p

TTTTOD

FFFFFfeeee
baseeeeeee

o

h=-]
st

-f dump.mem -o testME windows.memmap .Memm

2. Dumping process memory:

python vol.py -f dump.mem -o <outputDir> windows.dumpfiles --pid <PID>

Bl C\Windows\System32\cmd.exe — O %

-f dump.mem -o testME windows.dumpfiles --pid 1

finished

IPHLPAPI.DLL file.@ 50.a: 60 . Imag tionObject.IPHLPAPI.D

ation.dll file. 78. b8 .Ima ionobj .de

mfplat.dll ile. . e .mfplat.dll
upnp.dll File.@o 8. .ImageSectionObject.upnp.dll.i
Error dumping file

le
tionObject.

amp . mem windo umpfiles --help

[-h] [--pid addr VIRTADDR]

114

ThinkCyber | NX Malware Analysis

3. List registry hives:

python vol.py -f dump.mem windows.registry.hivelist

ER C\Windows\System32\cmd.exe

thon . -f dump.mem windows.regi hivelist

scanning finished
File output

TUSER. Disabled

4. Extracting registry hives:

python vol.py -f dump.mem -o output_dir windows. hivelist.Hivelist --dump

5. Checking Registry keys:

Python vol.py -f dump.mem windows.registry.printkey --key <Key Path>

ER C\Windows\System32\cmd.exe

ntVersion
6. Dumping user hashes:
python vol.py -f dump.mem windows.hashdump.Hashdump

7. Scanning for files:

python vol.py -f dump.mem windows.filescan

EX Select C:\Windows\System32icmd.exe - pythen vol.py -f dump.mem windows.filescan

-f dump.mem windows.filescan

ning finished

115

ThinkCyber | NX Malware Analysis

Other Commands

python vol.py -f dump.mem windows.lsadump: This command is used to dump the Local
Security Authority (LSA) secrets. This can be useful for malware analysts because the LSA
secrets can contain cached credentials, which some types of malware might use for lateral
movement or privilege escalation.

python vol.py -f dump.mem windows.svcscan.SvcScan: This command scans for Windows
services. Malware often creates or modifies services to achieve persistence, so this can be
useful for determining whether a malware infection has occurred and how it maintains its
presence on the system.

BN Select C:\Windows\System32\cmd.exe — m] b

python vol.py -f dump.mem windows.handles.Handles --pid 636: This command lists all
handles opened by a particular process. Handles can refer to files, registry keys, processes, or
other system resources. This can reveal what a process was accessing at the time of the
memory dump, which can be useful for understanding what a malicious process was doing.

python vol.py -f dump.mem windows.malfind.Malfind --pid 4260: This command finds and
extracts potentially malicious injected code segments from a specific process. This can help
analysts locate and extract the actual payload of a malware that uses code injection for
evasion.

python vol.py -f dump.mem windows.registry.userassist.UserAssist: This command extracts
information about executed programs stored in the UserAssist registry key. This can help
analysts to construct a timeline of user activity, which can be useful in determining when a
malware infection may have occurred.

116

ThinkCyber | NX Malware Analysis

B C:\Windows\System32\emd.exe — m] %

hon vol. dump .mem windows

ntuser.da

= python vol.py -f dump.mem windows.poolscanner.PoolScanner: This command scans for
pool tags in kernel memory. This can be helpful for finding hidden or unlinked kernel objects,
which could be a sign of rootkit activity.

BN C\Windows\System32\emd.exe - m] X

nished

8cocoeadecoe

LE_ENTRY

= python vol.py -f dump.mem windows.registry.certificates.Certificates: This command
extracts information about system certificates from the registry. Malware might add or
manipulate certificates to facilitate man-in-the-middle attacks or to gain trust on the system.

te name

Root

= python vol.py -f dump.mem windows.vadinfo.Vadinfo: This command provides information
about the Virtual Address Descriptors (VAD) tree. The VAD tree can show memory mappings,
which could reveal signs of injected code or unpacked binaries in memory.

117

ThinkCyber | NX Malware Analysis

BN Select C\Windows\System32\cmd.exe - python vel.py -f dump.mem windows.vadinfo.Vadinfo - m] X
dinfo.VadInfo

CommitCharg M Parent File

BxlecooB20600 PAGE_READWRITE ©

ex7ffele68 PAGE_READOMLY 214

ex7ffeboge 7 PAGE_RE! MLY 1
PAGE_EXECUTE_WRITECOPY
Disabled
Bxlece@ol0600 Bxlec@@elefff PAGE_READWRITE ©

coee86600 oxlecooapefff PAGE_READWRITE ©

= python vol.py -f dump.mem windows.envars.Envars --pid 636: This command lists the
environment variables of a specific process. Malware often manipulates environment
variables for various purposes such as hiding its presence, finding paths to certain system
resources, or determining system configuration details.

imp .mem windows.e

ning finished
Value

oMM MM

ommonPr
OMPUTERNAM

m

DM M M

W W o n A KN
m

-
i
m
n

= python vol.py -f dump.mem windows.mftscan.MFTScan: This command scans for Master File
Table (MFT) entries in memory. MFT entries can provide valuable information about files that
were present on the system at the time of the memory dump, which could include malware
artifacts or signs of user activity.

BN C\Windows\System32\cmd.exe — m] x

e Created Modified|

FILE i ! i 1 2017- 141 . 080080
-B6Be00 11 - 1 -0oeeas
2 - BoBess
145 . 880800 te2:
20 File | 2 . BeoBeo
. 600000 . i
58 FILE i X i i 2 :41:03. 000000

. 600000
. beoeeo

.boooeo
2 - BeEease

118

ThinkCyber | NX Malware Analysis

Helpful Tips

= Each Volatility plugin has its own set of options. You can see these by typing python vol.py
<Plugin> --help.

BN C:\Windows\System32\cmd.exe — O x

ndline --help

.mdline.[mdLine [-h] [--pid [PID ...]]

are excluded)

= The list of all available plugins can be obtained with python vol.py --help.

B8 C\Windows\System32icmd. exe — [m] X

0 thr

UTPUT_DIR] [
¢ 11

al

-h, --help s El 2 or ific plugin optio

CONFIG,

rallelism [{prc
ument given)
-e EXTEND, --extend EXTEND

119

ThinkCyber | NX Malware Analysis

Volatility 2.6

Volatility 2.6 is the culmination of years of development and refinement, making it the go-to tool for
many digital forensics professionals. This version supports a wide range of plugins for analyzing
different aspects of a system's memory, such as processes, network connections, and loaded modules.

It also supports a variety of profiles for different operating systems, including Windows, Linux, and Mac
OS X.

Selecting the Right Profile

Volatility profiles are crucial as they provide Volatility with necessary system information about the
system from which the memory dump was obtained. To get a list of supported profiles, use the
following command:

kali@kali: ~/Desktop

File Actions Edit View Help

~/Desktop
dump.vmem imageinfo
Volatlllty Foundation Volatility Framework 2.6
INFO : volatility.debug : Determining profile based on KDBG search ...
Suggested Profile(s) : Win7SP1x64, Win7SP@x64, Win2008R2SPOx64, Win2008R2SP1x64_
23418, Win2008R2SP1x64, Win7SP1x64_23418
AS Layerl : WindowsAMD64PagedMemory (Kernel AS)
AS Layer2 : FileAddressSpace (/home/kali/Desktop/dump.vmem)
PAE type : No PAE
DTB : @x187000L
KDBG : @xf800029ed@70L
Number of Processors : 2
Image Type (Service Pack) : @
KPCR for CPU @ : @xfffff800029eed0OL
KPCR for CPU 1 : Oxfffff880009eed00L
KUSER_SHARED_DATA : @xfffff78000000000L
Image date and time : 2016-10-05 03:05:11 UTC+0000
Image local date and time : 2016-10-04 21:05:11 -0600

Investigating Processes

With the right profile, you can examine running processes. This can be useful in identifying any
suspicious or malware processes. Use the commands pslist, psscan, pstree:

kali@kali: ~/Desktop
File Actions Edit View Help

~/Desktop
dump.vmem psllst
Volatlllty Foundation Volatility Framework 2.
offset(V) Name PID PPID Hnds
Exit

oxfffffa80018af9ed System

0-04 12:05:22 UTC+0000
Oxfffffa80027ba470 smss.exe
0-04 12:05:22 UTC+0000
OxfffffaB800336a060 csrss.exe
0-04 12:05:22 UTC+0000
Oxfffffa80036c81b0 wininit.exe
0-04 12:05:23 UTC+0000
0xfffffa8@@3fb49f@ csrss.exe
0-04 12:05:23 UTC+0000
OxfffffaB8003631300 services.exe

120

ThinkCyber | NX Malware Analysis

kali@kali: ~/Desktop

File Actions Edit View Help
~/Desktop

. dump . vmem psscan
Volatility Foundation Volatility Framework 2.6
0ffset(P) Name PPID PDB Time created
Time exited

0x000000007d450b30 SearchFilterHo 3276 0x000000006b2bf000 2016-10-04
C+0000 2016-10-04 12:07:17 UTC+0000

0x000000007d489490 OSPPSVC.EXE 3532 0x0000000034c44000 2016-10-04
C+0000

0x000000007d4beb30 cmd.exe 1 0x000000002bb6f000 2016-10-05
C+0000 2016-10-05 03:05:11 UTC+0000

0x000000007d4e4060 ipconfig.exe 3348 0x0000000062beadd@ 2016-10-05
C+0000 2016-10-05 83:05:11 UTC+0000

0x000000007d6bf060 WmiPrvSE.exe 1580 0x0000000005cd0000 2016-10-04

kali@kali: ~/Desktop

File Actions Edit View Help

. dump . vmem pstree
Volatility Foundation Volatility Framework 2.6
Name PPid Time

Oxfffffa80036c81bB:wininit.exe 344 2016-10-04
105:23 UTC+0000
. OxfffffaB003631300:services.exe 2016-10-04
:105:23 UTC+0000
.. BOxfffffaB8003fc4680:VGAuthService. 2 2016-10-04
105:24 UTC+0000
.. Oxfffffa8003597060:SearchIndexer. 2016-10-04
:106:17 UTC+0000
. Oxfffffag8@020b9960:SearchProtocol 2016-10-05
105:07 UTC+0000
. Oxfffffag8001b3de60:SearchFilterHo 2016-10-05
:105:07 UTC+0000

This will return a list of all active processes at the time the memory image was taken.
Network Connections

In the case of a network attack, you may want to analyze active network connections. The 'netscan’
plugin can provide this information:

kali@kali: ~/Desktop

File Actions Edit View Help

924 svchost.exe

0x7fdd3600 UDPv4 0.0.0.0:50294 * ik
924 svchost.exe 2016-10-05 ©3:05:11 UTC+0000

0x7fchdaed TCPv4 10.1.1.122:49283 188.172.251.2:5938 CLOSED
-1

0x7fdelcfo TCPv4 10.1.1.122:54906 66.147.240.99:993 CLOSED
2692 OUTLOOK.EXE

0x7fd1b5c@ TCPv4 10.1.1. 10 66.147.240.99:0 LISTENING
-1

0x7fdb3880 TCPv4 10.1.1.122 54.174.131.235:80 CLOSED
1364 SkypeC2AutoUpd

~/Desktop
dump . vmem netscanfj

This will return a list of network connections, including the process, protocol, local and remote
addresses, and state of the connection. Other Volatility commands for network — connections,
connscan, sockets, sockscan.

121

ThinkCyber | NX Malware Analysis

Registry Analysis

hivelist can be used to list the registry hives found in memory. It provides information about their
names and locations.

kali@kali: ~/Desktop

File Actions Edit View Help

. dump . vmem hivelist
Volatility Foundation Volatility Framework 2.6
Virtual Physical Name

0xfffff8a001a42010 0x0000000033b20010 \??2\C:\Users\phillip.price\ntuser.dat

0xfffff8a00259d010 0x000000002bf6b01@ \?2\C:\System Volume Information\Syscache.hve
Oxfffff8a00000d0c0 0x000000002d5f20e0 [no name]

0xfffff8a000024010 0x000000002d4bf01@ \REGISTRY\MACHINE\SYSTEM

0xfffff8a000062010 0x000000002d67f010 \REGISTRY\MACHINE\HARDWARE

Oxfffff8a0004cc010 0x0000000022f6d010 \SystemRoot\System32\Config\DEFAULT
Oxfffff8a0007d8010 0x000000002b8dad10 \SystemRoot\System32\Config\SOFTWARE
Oxfffff8a00090d420 0x0000000023c94420 \Device\HarddiskVolumel\Boot\BCD

The printkey command is used to display the keys and values from a specific path in the registry.

kali@kali: ~/Desktop

File Actions Edit View Help
~/Desktop
. dump . vmem printkey
Volatility Foundation Volatility Framework 2.6
Legend: (S) = Stable (V) = Volatile

Registry: \SystemRoot\System32\Config\SOFTWARE
Key name: Svc (S)
Last updated: 2016-10-04 12:07:52 UTC+0000

Subkeys:
(V) Vol

Values:
REG_QWORD VistaSpl 1 (S) 128920218544262440
REG_DWORD AntiVirusOverride : (S) @

hashdump: The hashdump command is used to extract password hashes from the SAM (Security
Accounts Manager) registry hive. These hashes can then be used for offline password cracking.

File Actions Edit View Help

~/Desktop
dump.vmem hashdump

Volatility Foundation Volatility Framework 2.6
Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73¢c59d7e0c089c0 :::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe@d16ae931b73¢c59d7e0c089¢0 :
eadmin:1000:aad3b435b51404eeaad3b435b51404ee:3fd05e4c2820daf82e8f126a85ad1f5b:::

The userassist plugin is used to display the UserAssist registry keys, which store information about the
executable files that the user has started. This can provide insight into the user's behavior on the
system.

122

ThinkCyber | NX Malware Analysis

The command dumpregistry is used to dump the entire Windows registry from memory. This allows
for further offline analysis and can provide a wealth of information about the system's configuration

kali@kali: ~/Desktop

File Actions Edit View Help
~/Desktop
. dump . vmem userassist
Volatility Foundation Volatility Framework 2.6

Registry: \??\C:\Users\phillip.price\ntuser.dat

Path: Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-917

8-9926F41749EA}\Count
Last updated: 2016-10-05 03:05:07 UTC+0000

Subkeys:
Values:

REG_BINARY Microsoft.Windows.GettingStarted :
Count: 14

Focus Count: 21

Time Focused: 0:07:00.500000

Last updated: 2016-10-04 ©03:57:38 UTC+0000

and the applications installed on it.

Malware can hide in various places within the Windows registry. Here are some common locations:

1.

kali@kali: ~/Desktop

File Actions Edit View Help

~/Desktop
. dump . vmem dumpregistry
Volatility Foundation Volatility Framework 2.6
ERROR : volatility.debug : Please specify a dump directory (--dump-dir)

~/Desktop
. dump . vmem dumpregistry output_dir
Volatility Foundation Volatility Framework 2.6
EEEAKEAKKEAKRKEARAAKRKAAAA KKK ARAKkA KA hkkhkhkhkhhhkkhhhkkhkhhkhkhkik

Writing out registry: registry.0xfffff8a00000d0ed.no_name.reg

khkkkhkkhkhkhkhkkhkhkhkhkkhkhhhkhhkhhkhhhhkhhhrhkdhhhhdhhrhkhihd
khkhkkkhkhkhkhkkhkhkhkkhhhkhkkhkhkhkhkhkhkhhhhkhhhhhdhkhhhhhhk

Writing out registry: registry.oxfffff8a00259d010.Syscachehve.reg

EEAKEKKEAKRKEARAAKRKAAAA KKK ARKA KA ARk hkhkhhhkkhhhkkhkhhkhkhkik
kkkkkkkhkkhkhkkhkhkhkhkhkhkhhkhkhkhkrhkhhkhkrhkhhkhkrhkhhkhkdhkhhkhkrhkhhkik
Writing out registry: registry.0xfffff8a001a40420.UsrClassdat.reg

Run Keys: The Run keys are one of the most common places for malware to persist. They cause

programs to run each time a user logs in. These keys are located in:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

Explorer Shell Extensions: Malware can also add itself as a shell extension, causing it to be loaded

whenever Explorer is run. The key for this is located at:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Extensions

123

ThinkCyber | NX Malware Analysis

3. Browser Helper Objects (BHOs): These are DLLs that Internet Explorer loads whenever it starts.
The key for BHOs is:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Browser
Helper Objects

4. Services: Malware may create a new service or modify an existing one to gain persistence. The key
for services is:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

5. Applnit_DLLs: This is a list of DLLs that are loaded by the system into every process that loads
User32.dll. The key for this is:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Windows\Applnit_DLLs

6. Winlogon Notify: This key is used to specify DLLs that Winlogon should notify of logon events.
These DLLs can be used by malware to load into the Winlogon process and from there into other
processes that are created. The key for this is:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify

7. Image File Execution Options (IFEO): IFEO can be used to debug software but malware can misuse
it to intercept calls to legitimate programs. The key for this is:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options

124

ThinkCyber | NX Malware Analysis

Loaded Kernel Modules

To examine loaded kernel modules, use the 'modules’ plugin:

kali@kali: ~/Desktop

File Actions Edit View Help
~/Desktop
. dump.vmem modules
Volatility Foundation Volatility Framework 2.6
offset(V) Size File

oxfffffa8001840890 ntoskrnl.exe 0xfffff80002804000 0x5ddeeo \SystemRoot\
system32\ntoskrnl.exe

Oxfffffa80018407a0 hal.dll Oxfffff80002del000 0x49000 \SystemRoot\
system32\hal.dll

Oxfffffa8oe18406c@ kdcom.dll 0xfffff80000b9an00 0xa@00 \SystemRoot\
system32\kdcom.dll

@xfffffag800183ae70 mcupdate.dll Oxfffff88000c15000 0x44000 \SystemRoot\
system32\mcupdate_GenuineIntel.dll

oxfffffa800183ad90 PSHED.d1l 0xfffff88000c59000 0x14000 \SystemRoot\

This can be particularly helpful when investigating a potential rootkit infection.

Envars

The envars plugin is a tool you can use to present the environment variables of a process. It typically
reveals a range of information, including the installed number of CPUs, the hardware architecture, and
various specifics about the process like its current and temporary directories, session name, computer
name, and user name, among other intriguing details.

kali@kali: ~/Desktop

File Actions Edit View Help

3924 SearchFilterHo 0x0000000000381320 SystemRoot C:\Windows

3924 SearchFilterHo 0=x0000000000381320 TEMP C:\Program
Data\Microsoft\Search\Data\Temp\usgthrsvc

3924 SearchFilterHo 0=x0000000000381320 TMP C:\Program
Data\Microsoft\Search\Data\Temp\usgthrsvc

3924 SearchFilterHo 0=x0000000000381320 USERDOMAIN E-CORP

3924 SearchFilterHo 0x0000000000381320 USERNAME WIN-191HVE
3KTLOS$

3924 SearchFilterHo 0x0000000000381320 USERPROFILE C:\Windows
\system32\config\systemprofile

3924 SearchFilterHo 0x0000000000381320 windir C:\Windows

~/Desktop
dump . vmem envars|j

Procdump

Use the procdump command to extract an executable from a process. If you want to avoid certain
validation measures used during PE header parsing, you can include the --unsafe or -u flags. Beware
that some malicious software may deliberately alter size fields in the PE header to disrupt memory
extraction tools.

125

ThinkCyber | NX Malware Analysis

kali@kali: ~/Desktop

File Actions Edit View Help
~/Desktop
. dump . vmem procdump
Volatility Foundation Volatility Framework 2.6
Process(V) ImageBase Name Result

oxfffffa8ovl8af9ed@ ———————— — System Error: PEB at @x@ is unavailabl
e (possibly due to paging)

oxfffffa80027bas70 0x0000000048350000 smss.exe : executable.280.exe
oxfffffa800336a060 0x0000000049940000 csrss.exe : executable.360.exe
0xfffffaB80036c81b0 0=x00000000ffda@@O® wininit.exe : executable.412.exe
oxfffffa8o03fb49f0 0x0000000049940000 csrss.exe : executable.428.exe
oxfffffaB8003631300 0=x00000000ff790000 services.exe : executable.460.exe
oxfffffa8003a52910 0x00000000ff9d0000 1sass.exe : executable.476.exe
oxfffffa800383f700 0x00000000ff910000 1sm.exe . executable.484.exe

Filescan

The filescan command is used to detect FILE_OBJECTs in physical memory using a technique called
pool tag scanning. This command is effective at finding open files, even if they are being hidden by a
rootkit, a malicious software that can conceal files on disk and manipulate API functions to hide open
handles in a live system. The output of the filescan command provides various details about the
FILE_OBIJECT including its physical offset, file name, the number of pointers and handles to the object,
and the permissions given to the object.

kali@kali: ~/Desktop

File Actions Edit View Help

~/Desktop

. dump.vmem filescan g1 .exe
Volatility Foundation Volatility Framework 2.6
0x000000007c21c6T0 16 @ R--r-d \Device\Harddiskvolumel\Windows\System32\WindowsPo
werShell\vl.0\en-US\powershell.exe.mui
0x000000007c21c840 12 @ R--r-d \Device\Harddiskvolumel\Windows\System32\WindowsPo
werShell\vil.0\powershell.exe
0x000000007d41b440 16 @ R--rwd \Device\HarddiskVolumel\Windows\System32\en-US\Sea
rchindexer.exe.mui
0x000000007d41c740 16 @ R--rwd \Device\HarddiskVolumel\Windows\System32\SearchInd
exer.exe
0x000000007d434ca0 16 @ R--rwd \Device\HarddiskVolumel\ProgramData\Microsoft\Sear
ch\Data\Applications\Windows\Projects\SystemIndex\Indexer\CiFiles\SETTINGS.DIA
0x000000007d4363b0 15 @ R--rwd \Device\HarddiskVolumel\ProgramData\Microsoft\Sear

Dumpfiles

For the sake of system performance, files are cached in memory as they are accessed and utilized. This
characteristic of caching makes it a beneficial resource for forensic analysis, as it allows for accurate
retrieval of files that were in active use, unlike file carving which doesn't leverage the way items are
arranged in memory. For performance reasons, files may not be fully mapped in memory, and any
absent sections are padded with zeros. Files that have been extracted from memory can subsequently
be analyzed using external tools.

kali@kali: ~/Desktop

File Actions Edit View Help

~/Desktop
dump . vmem dumpfiles 0x000000007c21c840 New

Volatility Foundation Volatility Framework 2.6

ImageSectionObject 0x7c21c840 None \Device\HarddiskVolumel\Windows\System32\WindowsPow
ershell\v1l.0\powershell.exe

DataSectionObject @x7c21c840 None \Device\HarddiskVolumel\Windows\System32\WindowsPowe
rShell\v1l.@\powershell.exe

e

126

ThinkCyber | NX Malware Analysis

When you use the dumpfiles command in Volatility, it will extract the data associated with a file object
from the memory dump and save it to a file on disk. Depending on the options you use with the
command and the type of the file object, dumpfiles can create one or two files for each file object.

1.

.dat files: By default, dumpfiles creates a .dat file for each file object. This file contains the data
from the file object as it is currently in memory. If parts of the file have been paged out to disk
or haven't been loaded into memory at all, the .dat file will not include those parts. The .dat
file gives you a snapshot of the file as it was in memory at the time the memory dump was
taken.

.img files: If you use the -i or --include-image option with the dumpfiles command, it will also
create a .img file for each file object. This file includes the complete contents of the file as they
are on disk. This means that the .img file can include parts of the file that were not in memory
at the time the memory dump was taken. However, dumpfiles can only create .img files for file
objects that represent files on the disk of the system the memory dump was taken from. If the
memory dump does not include a full dump of the system's disk, dumpfiles may not be able
to create a .img file.

Important Plugins

"Malfind" is a plugin in the Volatility framework used for memory forensics. This plugin is specifically
designed to find and extract potentially malicious code injected into the memory of a system.
Here's a more detailed explanation:

Process Memory Scanning: Malfind scans the memory of a running process. It identifies areas
of memory that may have been altered by malware or malicious injections. This is a common
technique used by advanced malware to hide its presence from typical anti-virus or anti-
malware scans that may only look at the file system and not in running memory.

Memory Protection Verification: Malfind examines the protection levels of memory sections.
It looks for memory regions with protections not typically used by legitimate programs, such
as writeable and executable (WX) memory.

Code Extraction: Malfind can extract the suspicious or potentially malicious code it finds in
memory for further analysis. This allows a malware analyst or incident responder to investigate
the nature of the code and potentially determine what type of malware it is and what it's
designed to do.

kali@kali: ~/Desktop

File Actions Edit View Help

~/Desktop
dump . vmem malfind

Volatility Foundation Volatility Framework 2.6

Process: svchost.exe Pid: 2232 Address: 0x5c40000

Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE

Flags: CommitCharge: 128, MemCommit: 1, PrivateMemory: 1, Protection:

0x05c40000 20 00 00 00 ed ff @7 00 @c 00 00 01 00 07 00
0x05c40010 00 42 00 30 00 70 00 60 00 50 c0 00 do 00 00
0x05c40020 08 00 42 00 Q0 00 @0 05 48 8b 20 48 89 c2 48
@0x05c40030 8b 45 18 48 8b 00 48 89 02 48 45 20 81 00 a0

0x05c40000 2000 AND [EAX],
0x05c40002 0000 ADD [EAX],

127

ThinkCyber | NX Malware Analysis

Here's what to look for when executing Malfind in Volatility:

Unusual Process: Any unusual processes running on a system could be an indicator of a
malware infection.

Anomalous Memory Regions: Look for memory regions with both Write and Execute
permissions (commonly abbreviated as WX). Normal processes usually separate the areas
where they write data from the areas where they execute code, for security reasons. Malware
often needs to write its code to memory and then execute it, leading to WX memory regions.

Injected Code: Look for memory sections that don't belong to any known file on disk. This
could be a sign of code injection, a technique commonly used by malware to hide its presence.
Malfind might show a memory section with the "Protection" field set to
PAGE_EXECUTE_READWRITE (indicating it's a WX section), but the "Vad Tag" field set to
"VadS". The "VadS" tag means this memory section is private, and not mapped to any file on
disk, which could mean it's injected code.

Unusual Code in Memory Regions: Look for patterns of code that seem out of place. For
instance, a large amount of NOP (no-operation) instructions or shellcode may be a sign of a
buffer overflow or other exploit.

Presence of Encryption or Encoding: While looking through the hex dump of a suspicious
memory region, you might notice patterns that suggest the data is encrypted or encoded. For
instance, high entropy data, or common patterns that you've seen before in encrypted data.

Suspicious Strings: Use string searching utilities to look for suspicious strings within the
memory dump. They might include IP addresses, URLs, or known malicious commands or
payloads.

For example: ./vol -f dump.vmem --profile=Win7SP1x64 malfind

File Actions Edit View Help

0x0031003c 0000 ADD [EAX], AL
0%0031003e 0000 ADD [EAX], AL

kali@kali: ~/Desktop

Process: SkypeC2AutoUpd Pid: 1364 Address: 0xe00000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 1, MemCommit: 1, PrivateMemory: 1, Protection:

0x00e00000 00 00 G0 00 00 00 00 00 00 0@ 00 00 @O0 00 00 @O
0x00e00010 00 00 e 00 00 00 00 00 0O 0@ 00 00 @O0 00 00 0O
0x00e00020 10 00 e0 00 00 00 00 00 0O 00 00 00 00 00 00 0O
0x00e00030 20 00 e0 00 00 00 00 00 0O 00 00 00 00 00 00 0O

Vad Tag: VadS: The tag "VadS" denotes that this memory region is a private memory section,
meaning it's not mapped to a file on disk. This could be a sign of code injection, a technique
used by malware to hide its presence.

Protection: PAGE_EXECUTE_READWRITE: The region is marked as executable and read/write,
often referred to as WX. This is generally unusual because it means the memory region can be
both written to and executed from, which could be a sign of malicious activity. Normal
processes usually separate the areas where they write data from the areas where they execute
code, for security reasons.

128

ThinkCyber | NX Malware Analysis

e Flags: These are attributes of the memory region. Here's what each flag means:

= CommitCharge: 1: This refers to the amount of physical memory and/or page file space
that would be consumed if all the private pages related to this memory region were fully
in use. The unit of measurement is the number of pages, and in this case, it's 1.

= MemCommit: 1: This indicates that the memory region is committed, meaning that
physical storage will be allocated for it either in memory or in the paging file on disk.

= PrivateMemory: 1: This means the memory region is private to the process, and isn't
shared with any other process.

= Protection: 6: This refers to the memory protection level of the memory region when it
was initially allocated. The value 6 corresponds to PAGE_READWRITE, meaning the region
can be both read from and written to.

Virtual Address Descriptors (VAD)

A Virtual Address Descriptor, or VAD, is a data structure used by the Windows operating system to
manage a process's virtual memory. Each VAD describes a region of a process's virtual address space,
providing details such as the starting and ending addresses, the region's protection attributes (e.g.,
whether the region is readable, writable, or executable), and the type of memory region (e.g., free,
reserved, or committed).

In simple words: Imagine you have a large office building. This office building has many rooms (or
suites) where different companies can rent space. The building's management needs a way to keep
track of who is in each room, what they're using it for, and when they can access it.

The Virtual Address Descriptor (VAD) is like the building's management system. Each "room" in this
case, is a section of memory in the computer. The VAD keeps track of what each section of memory is
being used for, who is using it, and what they're allowed to do with it (like read, write, or execute data).
Just like how the building management can tell if a room is being used for an office, a gym, or a
restaurant, the VAD can tell if a section of memory is being used by a web browser, a word processor,
or a piece of malware. It's an essential part of how the computer's operating system manages and
protects its resources.

Exercise: Consider a simple process in your operating system. How might its virtual memory be
divided? What might different regions be used for? Note that the specifics will depend on the process
and the operating system, but try to think broadly.

Significance of VAD in Memory Analysis

VADs are particularly important in the field of memory analysis and forensics. By inspecting a process's
VAD, an analyst can gain insight into the process's memory layout and allocation. This can be crucial
when investigating potential malicious software (malware), as malware often manipulates a process's

memory in specific ways — for instance, through code injection or unpacking techniques.

Exercise: Consider why a malware might want to modify a process's memory. What benefits might it
gain from doing so?

Practical Usage of VAD: Volatility Framework

The Volatility Framework is an open-source collection of tools for performing memory forensics. It
includes several commands related to VADs:

129

ThinkCyber | NX Malware Analysis

= vadinfo: This command provides details about the VAD nodes of a process, such as start and
end addresses, protection attributes, and the memory region type.

= vadwalk: This command iterates over all VAD nodes in a process's VAD tree, useful for getting
a complete picture of a process's memory layout.

= vadtree: This command visualizes the VAD nodes of a process in a tree structure, helping to
understand the structure and organization of a process's memory.

= vaddump: This command dumps the content of a specific memory range as defined by a VAD
node. It's useful for extracting potentially malicious code or data from a process's memory.

Exercise: Install the Volatility Framework and get a memory dump from a running process on your
system (note: you might need administrative privileges to do this). Then, use the vadinfo command to
inspect the VAD of the process. What do you see?

kali@lali: ~/Desktop

File Actions Edit View Help
~/Desktop

. dump . vmem vadinfo 1364
Volatility Foundation Volatility Framework 2.6
AR AR R A A A AR AR A AR R AR A AR A AR A R A AR A AR AR ARk A A kA hkhkhkhkhkhkhkkhkhkkhhkhkhkkhkhhkkhkkhkkhhk
Pid: 1364
VAD node o 0xfffffa8003616500 Start 0x0000000066320000 End 0x0000000066351fff Tag Vad
Flags: CommitCharge: 4, Protection: 7, VadType: 2
Protection: PAGE_EXECUTE_WRITECOPY
Vad Type: VadImageMap
ControlArea gfffffa8003cfdedd Segment fffff8a00270fd0o0
NumberOfSectionReferences: ® NumberOfPfnReferences: 38
NumberOfMappedViews: 2 NumberOfUserReferences: 2
Control Flags: Accessed: 1, File: 1, Image: 1
FileObject @fffffa8003e11c8@, Name: \Device\HarddiskVolumel\Windows\SyswOwe4\winmm.dl1l
First prototype PTE: fffff8a00270fd48 Last contiguous PTE: fffffffffffffffc
Flags2: Inherit: 1

Here, -p 1364 specifies the process ID we're interested in. The output will include details about each
VAD node in the process's memory.

Finally, if we spot something suspicious, we could use vaddump to inspect it further:

kali@kali: ~/Desktop
File Actions Edit View Help

~/Desktop
. dump . vmem vaddump 1364 output_dir
Volatility Foundation Volatility Framework 2.6
Process Result

1364 SkypeC2AutoUpd 0x0000000066320000 @x0000000066351Fff output_dir/SkypeC2Aut
.7d8c7a70.0x0000000066320000-0=x0000000066351fFff.dmp

1364 SkypeC2AutoUpd 0x0000000004200000 0x000000000423ffff output_dir/SkypeC2Aut
.7d8c7a70.0x0000000004200000-0x000000000423FFff.dmp

1364 SkypeC2AutoUpd 0=x0000000003070000 0x000000000316FFff output_dir/SkypeC2Aut
.7d8c7a70.0x0000000003070000-0x000000000316Ffff.dmp

1364 SkypeC2AutoUpd 0x0000000000400000 @x0000000000d4efff output_dir/SkypeC2Aut
.7d8c7a70.0x0000000000400000-0x0000000000d4efff.dmp

1364 SkypeC2AutoUpd 0x0000000000270000 @x0000000000271Fff output_dir/SkypeC2Aut
.7d8c7a70.0x0000000000270000-0x0000000000271Fff.dmp

1364 SkypeC2AutoUpd 0x0000000000190000 0x0000000000193fff output_dir/SkypeC2Aut

Here, -D output_dir/ specifies the directory where the dumped memory regions will be stored.

130

ThinkCyber | NX Malware Analysis

Mutantscan

To perform a scan of physical memory for KMUTANT objects using pool tag scanning, you can utilize
the mutantscan command. By default, this command presents all objects, but you have the option to
specify -s or --silent to exclusively display named mutexes. If a mutex owner exists, the CID column will
provide the corresponding process ID and thread ID.

= KMUTANT is a structure used by the Windows operating system at the kernel level to represent
a mutex object.

= Mutex, short for "mutual exclusion," is a common synchronization mechanism used in
computing to prevent multiple threads or processes from accessing some shared resource
concurrently. Mutexes can be used to ensure that a piece of code or data structure is accessed
by one thread or process at a time, preventing race conditions and data inconsistencies.

kali@kali: ~/Desktop

File Actions Edit View Help
~/Desktop

dump . vmem mutantscan

Volatility Foundation Volatility Framework 2.6
0ffset(P)

#iHnd Signal Thread

0x000000007d408dcd
ex_tvr

0x000000007d408e80 0 Oxfffffa8002471630
nstance_Mutex_tvr
0x000000007d4095d0
0x000000007d41f550
Instance_Mutex_tvr

1 0x0000000000000000 DynGateInstanceMut
TeamViewer_Win32_I

0x0000000000000000
Oxfffffag8o0247f630

N

TeamViewer3_Win32_

0x000000007d42cacO
0x000000007d431060
0x000000007d43efco
0x000000007d43fdbo
0x000000007d451300
0x000000007d457060

[y

0x0000000000000000
0x0000000000000000
0x0000000000000000
oxfffffagooslef710
0x0000000000000000
0x0000000000000000

3184

SearchServiceMUT

[N

0x000000007d45b3f0 0x0000000000000000

Other Useful Tools

Redline

Redline®, FireEye’s premier free endpoint security tool, provides host investigative capabilities to users
to find signs of malicious activity through memory and file analysis and the development of a threat
assessment profile. Use Redline to collect, analyze and filter endpoint data and perform 10C analysis
and hit review. In addition, users of FireEye’s Endpoint Security (HX) can open triage collections directly
in Redline for in-depth analysis, allowing the user to establish the timeline and scope of an incident.
This app runs on Windows only.

Redline’

> |
== /‘ I
o \i I

131

ThinkCyber | NX Malware Analysis

Understanding Memory Forensics
The process of memory forensics consists of several steps: memory acquisition, memory analysis,
timeline analysis, and finally, reporting.

Memory Acquisition
Memory acquisition is the first step, and it involves collecting a snapshot of the system's memory.

Exercise: Memory Acquisition
Use a tool such as Dumplt or Winpmem to obtain a memory dump of your system.

Memory Analysis
This is where you inspect the memory dump to reveal the system state at the time of acquisition.

Exercise: Memory Analysis
Use a memory analysis tool like Volatility to inspect the memory dump obtained in the previous
exercise.

Timeline Analysis
Timeline analysis involves reconstructing a sequence of events based on data extracted from the
memory dump.

Exercise: Timeline Analysis
Using the data obtained in the previous step, try to reconstruct a timeline of events.

Reporting
Finally, you will need to present your findings in a clear and understandable manner.
Exercise: Comparing Live and Dead Memory Acquisition
1. Conduct a live memory acquisition on a test machine using a tool such as Dumplt.
2. Power off the machine and conduct a dead memory acquisition using a hardware device if
available.
3. Compare the two acquired memory images using a tool like Volatility.

132

ThinkCyber | NX Malware Analysis

Basics of Malware and Its Impact on Memory

Malware often leaves traces in the memory of a system, even if it tries to hide its activities on the hard
drive. It's in memory where malware typically carries out its malicious actions, such as process
injection, privilege escalation, or establishing network connections. Therefore, understanding how
malware impacts memory is critical for malware analysis and memory forensics.

Exercise: Impact of Malware on Memory
Research a known piece of malware and discuss how it impacts the memory of an infected system.
Discuss the indicators of compromise (IOCs) that it leaves in memory.

Malware Techniques in Memory

Various malware techniques can be seen in memory, such as code injection, hooking, and process
hollowing. Code injection involves injecting malicious code into a legitimate process's memory.
Hooking is where malware intercepts system function calls, events, or messages. Process hollowing
occurs when malware creates a new process in a suspended state and replaces its image with one that
is malicious.

Exercise: Malware Techniques in Memory
Choose one malware technique mentioned above and provide a detailed analysis of how it works, its
purpose, and how it could be identified in a memory dump.

Memory Forensics in Malware Analysis

Memory forensics can reveal the presence of malware by highlighting unusual activities in memory. By
analyzing the memory dump of an infected system, an analyst can uncover processes, network
connections, and other system interactions that indicate the presence of malware.

Exercise: Memory Forensics in Malware Analysis

Using a virtual machine, infect the system with a sample malware from a source like "theZoo" (a
repository of live malware). Capture a memory dump using a tool like Dumplt or WinPmem. Then,
analyze the dump using a memory forensics tool like Volatility. Document any signs of the malware
you find.

Understanding Anti-Forensics Techniques

Advanced malware may use anti-forensics techniques to evade detection. These can include
techniques to hide processes, network connections, or other malicious activities in memory.
Recognizing these techniques is critical for successful memory forensics.

Exercise: Understanding Anti-Forensics Techniques

Research an example of malware that uses anti-forensics techniques. Describe how these techniques
work, their impact on memory forensics, and possible countermeasures an analyst can take.

133

ThinkCyber | NX Malware Analysis

Detecting Malware through Memory Analysis

Memory analysis can be an incredibly powerful tool in identifying malware within a system. This
process is integral for discovering malicious software that doesn't write to the disk, as it relies on
inspecting the content of a system's memory to spot indicators of compromise.

Methods of Malware Detection in Memory
Various methods can be used to detect malware in memory:

1. Signature-Based Detection: This method is based on known malware signatures. While
effective against known threats, it's limited in identifying new, unknown malware.

2. Heuristic-Based Detection: This approach uses algorithms and rules to identify common
characteristics of malware. It's more effective in detecting new or unknown threats but can
also lead to false positives.

3. Anomaly-Based Detection: This technique involves establishing a baseline of normal behavior,
then identifying deviations from this baseline as potential malware.

Exercise: Methods of Malware Detection in Memory
Compare the advantages and disadvantages of signature-based, heuristic-based, and anomaly-based
detection methods.

Malware Artifacts in Memory
When malware is active in a system, it often leaves specific artifacts in memory. These can include:

= Unusual or unauthorized processes

= Strange or unauthorized network connections
= Unusual loaded DLLs

= Unexpected or hidden APIs or system calls

= Evidence of code injection or hooking

Exercise: Malware Artifacts in Memory

Use a memory analysis tool like Volatility on a malware-infected memory dump (ensure to do thisin a
safe, isolated environment). Identify as many artifacts as you can that suggest the presence of
malware.

Memory Forensics Tools for Malware Detection
Several memory forensics tools can aid in the detection of malware:

= Volatility: An open-source framework for volatile memory analysis. It can extract information
like running processes, network connections, and loaded DLLs.

= Rekall: Another open-source tool, similar to Volatility, but with a few differences in the
information it can extract and its command structure.

= Memoryze: A free memory forensic software that can acquire and/or analyze memory images.

Exercise: Using Memory Forensics Tools for Malware Detection

Choose one of the tools mentioned above and use it to analyze a memory dump of a machine infected
with malware. Document the steps you took and the conclusions you made from your analysis.

134

ThinkCyber | NX Malware Analysis

Interpreting Memory Artifacts in Malware Analysis

Memory artifacts refer to data remnants left in the system memory (RAM) by running processes and
system activities. In the context of malware analysis, memory artifacts are valuable resources for
analysts because they provide insights into what activities were taking place on the system at the time
the memory was captured.

Memory Artifacts in Malware Analysis

In malware analysis, memory artifacts can provide crucial evidence about a malware's operation and
impact on an infected system. Some key artifacts include:

Running Processes: Malware often runs as a process on an infected system, and analysts can
investigate these processes to understand their purpose and functionality.

Loaded DLLs: Dynamic Link Libraries (DLLs) used by processes can provide further insights
about a malware's functionality.

Network Connections: Active or recently terminated network connections can reveal the
malware's communication channels.

Registry Keys: Many malware types interact with the Windows registry to ensure persistence
or store configuration data.

Unallocated Memory: This could contain remnants of malware that was running but has been
terminated or is trying to hide itself.

Interpreting Memory Artifacts
Memory artifacts can be interpreted in several ways, depending on their type and context:

Process analysis: Investigators analyze the list of running processes, their loaded modules,
parent-child relationships, and associated memory regions.

Network artifacts: These can be interpreted to understand the command and control (C2)
infrastructure of the malware, data exfiltration mechanisms, and other network-based
activities.

Registry artifacts: Interpretation of these can reveal malware's persistence mechanisms,
configurations, and potential changes to the system's configuration.

Unallocated memory artifacts: Investigators may look for strings, file headers, or other data
structures that may suggest malicious activity.

Hands-on with Volatility Framework
Volatility Framework is a powerful tool to extract memory artifacts and perform detailed analysis.

Exercise: Analyzing Artifacts

1.

Pw

Download a memory image of a known infected system. Use Volatility to list the running
processes.

Investigate any suspicious processes. Look at the DLLs loaded by the process and their memory
ranges.

Look for parent-child process relationships that look suspicious.

Research any unfamiliar IP addresses or ports.

Look for any Registry keys or values that look suspicious.

135

ThinkCyber | NX Malware Analysis

Intrusion Detection

Pcap (packet capture) files are one of the most important resources for a network analyst as they
contain a wealth of data about the network's activity. This analysis aids in identifying and mitigating a
wide range of threats.

Section I: Basic Network Analysis Techniques

Identifying IP Addresses: We begin with identifying all the IP addresses involved in network
communication. You can use Wireshark's Statistics > Endpoints function for this. It provides a
summary of all source and destination IP addresses.

Most Frequently Visited Website: To find the most frequently visited website, use the HTTP
requests present in the pcap file. The 'host' field in the HTTP header indicates the visited
website.

Understanding TCP: Transmission Control Protocol (TCP) is a key communication protocol that
enables reliable data exchange between computers. Examine the pcap file for TCP packets

using the Wireshark filter: tcp.

ICMP Packet Analysis: Internet Control Message Protocol (ICMP) packets, often used for error
reporting, can be filtered in Wireshark with the filter icmp.

Counting HTTP GET and POST Requests: You can use Wireshark filters (http.request.method
== GET or http.request.method == POST) to tally these request types.

Listing Unique MAC Addresses: Using the Statistics > Endpoints > Ethernet option in
Wireshark, you can list all unique MAC addresses.

Determining Packet Timestamps: The first recorded packet's timestamp can be found at the
top of the packet list in Wireshark.

Identifying FTP Traffic: Filter FTP traffic using ftp in Wireshark.

Identifying Ports: Source and destination ports can be viewed in the packet details pane under
the respective protocol section.

10. Counting DNS Responses: Use the filter dns.flags.response == 1 to tally DNS responses.

Section II: Intermediate Network Analysis Techniques

1.

Identifying TCP Port Scanning: Unusual patterns of TCP traffic such as many SYN packets to
different ports may indicate port scanning activity.

Spotting DDoS Activity: Look for an unusually high volume of packets, often of the same type,
destined for the same IP address.

Detecting Encrypted Traffic: Encrypted traffic can be spotted by examining the payload of the
TCP or UDP packets for non-readable characters.

136

ThinkCyber | NX Malware Analysis

4. Anomalies in DNS Queries and Responses: Irregular patterns such as repeated queries for
non-existent sites or high numbers of responses could be signs of DNS poisoning or DDoS.

5. Identifying C2 Communication: Look for regular or semi-regular communication to an external
IP address or addresses, possibly on unusual ports.
Section Ill: Advanced Network Analysis Techniques

1. Identifying APT Activity: Look for signs of long-term, persistent network traffic to external IP
addresses, which could be indicative of an Advanced Persistent Threat (APT).

2. Tracing Malware Delivery and Execution: Evidence might include communication with known
malicious IP addresses or the presence of known malware signatures in packet payloads.
3. Identifying Zero-Day Exploit Attempts: This could be indicated by unusual traffic patterns,

such as repeated failed login attempts followed by a sudden successful login.

4. Analyzing HTTPS Session: Decrypting HTTPS requires the server's private key or a pre-shared
key. Once decrypted, the session can be analyzed like regular HTTP traffic.

b

Detecting Malicious TOR Activity: This can be identified by traffic on TOR's known ports (9001
and 9030), particularly if the volume is high or consistent.

The key to effective network analysis is a blend of theoretical understanding, practical skills, and a
strong sense of curiosity. As you grow more comfortable with the techniques outlined in this chapter,
you'll become increasingly adept at spotting even the most subtle signs of network misbehavior.

137

ThinkCyber | NX Malware Analysis

Command and Control (C2) Infrastructure Analysis

Command and Control (C2) infrastructures represent the means by which threat actors manage and
control compromised systems within a target network. By understanding C2 infrastructure and
learning how to analyze it, network security professionals can identify ongoing attacks, attribute them
to specific threat groups, and disrupt the attacker's activities.

Understanding C2 Infrastructure

A C2 infrastructure typically involves a server controlled by a threat actor, which communicates with
compromised systems (bots) within a target network. The C2 server issues commands to the bots and
receives data in return.

Identifying C2 Traffic

C2 traffic can often be identified by specific characteristics, such as unusual patterns of network
behavior, connections to known malicious IP addresses, or the use of specific protocols or ports.

Exercise: Using a tool like Wireshark, inspect a pcap file with known C2 traffic. Can you identify the C2
communication based on these characteristics?

Analyzing C2 Protocols

Many C2 infrastructures use standard network protocols in unusual ways. For example, HTTP or DNS
might be used to issue commands or exfiltrate data.

Example: A C2 server might issue commands by embedding them in HTTP headers, or exfiltrate data
by encoding it in DNS query strings.

Exercise: Inspect a pcap file with C2 traffic using a protocol analyzer like Wireshark. Can you identify
the commands issued by the C2 server or any data being exfiltrated?

C2 Infrastructure Mapping

By analyzing C2 traffic, you can often identify other elements of the C2 infrastructure, such as
additional C2 servers or compromised systems within the same network.

Example: A sudden surge of traffic to a new IP address could indicate the activation of a secondary C2
server.

Exercise: Analyze a pcap file with known C2 traffic. Can you identify any additional C2 servers or
compromised systems?

Advanced C2 Analysis Techniques

Advanced C2 analysis techniques can involve the use of machine learning to identify patterns of C2
behavior, or sandboxing to safely execute and observe malware communication with its C2 server.

Example: Machine learning algorithms can be trained to recognize patterns of C2 communication, such
as periodic beaconing or the use of specific command sequences.

138

ThinkCyber | NX Malware Analysis

Common Patterns of Malicious Network Traffic

Recognizing malicious network traffic patterns is crucial for efficient network defense. These patterns,
which deviate from normal network behavior, can indicate a cyber attack or threat.

Understanding Malicious Network Traffic

Malicious network traffic refers to the data sent and received across a network that indicates a
potential cyber threat or attack. This can include things like communication with known malicious IPs,
unusual data transfers, or repeated login attempts.

Common Patterns of Malicious Network Traffic

While there are numerous patterns that can indicate malicious network traffic, some of the most
common ones include:

= Repeated Failed Login Attempts: This could be a sign of a brute force attack.

= Unusual Outbound Traffic: Significant outbound traffic, particularly to unfamiliar IP addresses,
can suggest data exfiltration.

= Excessive Network Scanning: This could indicate an attacker trying to find vulnerabilities to
exploit.

= Communication with Known Malicious IPs: This is a clear indicator of a potential threat.

= Unusual Increase in Network Traffic: An abnormal increase in traffic could suggest a Denial of
Service (DoS) attack.

= Multiple Requests for the Same File: This could be a sign of a Slowloris attack, which aims to
exhaust server resources.

Identifying Malicious Network Traffic

Identifying malicious network traffic requires continuous monitoring and analysis of your network.
Tools like Intrusion Detection Systems (IDS) and Security Information and Event Management (SIEM)
systems can be helpful in identifying and alerting on suspicious patterns.

Exercise: Choose a network traffic analysis tool, such as Wireshark or Snort, and use it to analyze a
sample network traffic pcap file. Look for any patterns that could indicate malicious activity.

Deep Packet Inspection for Malware Analysis

Deep Packet Inspection (DPI) is a type of data processing that inspects in detail the data being sent
over a computer network, and usually takes action by blocking, re-routing, or logging it. DPI is
particularly useful in malware analysis, as it allows for a more thorough inspection of network traffic.

Understanding Deep Packet Inspection

Unlike basic packet inspection that only checks the header of packets, DPI examines the data part (or
payload) of the packet. This enables it to spot potential malicious behavior hidden in the network
traffic. DPI can be used to detect various types of malware, including viruses, worms, trojans, and

more.

Exercise: Find examples of different types of malware that DPI can detect. Write a short description of
each, explaining how DPI helps in their detection.

139

ThinkCyber | NX Malware Analysis

Working Mechanism of Deep Packet Inspection

DPI works by closely examining the contents of each packet that passes through a given network point.
It checks the IP headers, payload, identifies protocol types, and can even keep track of network
connections and application session state. By doing so, DPI can identify suspicious patterns, anomalies,
or known malware signatures in the network traffic.

Exercise: Using a network traffic analysis tool like Wireshark, capture some packets from your network.
Try to analyze the different components of these packets.

DPI in Malware Detection

DPI can identify malware communication channels, such as command and control servers (C&C), by
detecting the specific patterns or signatures in the network traffic. It can also identify certain evasion
techniques used by malware, such as tunneling or encryption, which may not be detected by basic
packet inspection.

Exercise: Research some real-world examples where DPI was used to detect malware. What were the
key factors that led to successful detection?
Challenges in DPI

While DPI is a powerful tool for malware analysis, it also has its challenges. The increasing use of
encryption makes DPI less effective as it cannot inspect encrypted traffic. DPI can also impact network
performance due to the deep analysis of each packet. Moreover, privacy concerns arise as DPI has the
potential to reveal sensitive information in the packet's payload.

Task: Use a DPI tool, such as Wireshark with a DPI plugin or a standalone DPI tool, to conduct deep

packet inspection on your network traffic. Identify the different types of data and any potential
anomalies in the traffic.

Signature-based vs Anomaly-based Detection

Signature-based detection involves identifying known threats by comparing network traffic against a
database of known threat signatures. Each signature is a set of rules that describes a specific type of
malware or malicious behavior.

Understanding Anomaly-based Detection

Anomaly-based detection involves identifying unknown threats by detecting abnormal behavior in
network traffic. This method uses machine learning or statistical modeling to establish a baseline of
"normal" network behavior, and then flags deviations from this baseline as potential threats.

Signature-based vs Anomaly-based Detection: A Comparison

While both methods have their place in network traffic analysis, they each have strengths and
weaknesses:

= Effectiveness Against Known Threats: Signature-based detection excels at detecting known
threats, but struggles with zero-day attacks or new malware variants.

140

ThinkCyber | NX Malware Analysis

= Effectiveness Against Unknown Threats: Anomaly-based detection is better equipped to
detect new or unknown threats, but can generate false positives when legitimate network
behavior deviates from the norm.

= Maintenance and Updates: Signature-based systems require regular updates with new threat
signatures, while anomaly-based systems require continuous tuning and retraining of the
baseline model.

Hands-On: Working with Signature-based and Anomaly-based Detection

Understanding these methods in theory is a good start, but to truly grasp their strengths and
weaknesses, it's important to work with them hands-on.

Exercise: Set up a simple IDS using Snort (a signature-based system) and another using an anomaly-
based system of your choice. Use a variety of pcap files to test both systems and compare their
performance.

Task: Evaluate your current network security setup. Does it use signature-based, anomaly-based, or a
combination of both methods? How could it be improved by incorporating elements of the other
method?

Evasion Techniques used by Malware in Network Traffic

Evasion techniques are methods that malware uses to avoid detection or analysis. These can range
from simple obfuscation techniques to complex behaviors that hide malicious activity within seemingly
legitimate network traffic.

Common Evasion Techniques
Here are some common evasion techniques that malware might use:

= Encryption and Tunneling: Encrypting the command-and-control communication or tunneling
it through a legitimate protocol can hide the malware's network traffic.

= Polymorphism and Metamorphism: Malware can change its code or behavior to avoid
signature-based detection.

= Domain Generation Algorithms (DGAs): DGAs can generate a large number of potential
command and control server domains, making it difficult to block them all.

= Fast Flux: Fast Flux techniques use a rapidly changing network of compromised hosts to hide
the actual command and control server.

Exercise: For each evasion technique listed above, provide a real-world example of a malware that uses
it. Discuss how the technique works in the context of the malware and the challenges it presents for
detection.

Detecting Evasion Techniques

While evasion techniques can make malware detection more challenging, they are not foolproof. With

careful network traffic analysis and the right tools, it's possible to detect these techniques and identify
the malware using them.

141

ThinkCyber | NX Malware Analysis

Exercise: Research methods for detecting each of the evasion techniques listed in 17.2. Write a
summary of each method, including its effectiveness and any limitations.

Hands-On: Detecting Evasion Techniques in Network Traffic

To truly understand these evasion techniques and how to detect them, it's helpful to get hands-on
experience.

Exercise: Using a network traffic analysis tool like Wireshark, analyze pcap files containing malware
traffic that uses the evasion techniques discussed. Identify the evasion techniques and write a report

on your findings.

Task: Review your organization's network traffic for signs of evasion techniques. Document any
suspicious activity and develop a plan to investigate and respond to potential malware infections.

142

ThinkCyber | NX Malware Analysis

Network Forensics: Post-Malware Infection Analysis

Network forensics focuses on monitoring and analyzing network traffic, both to detect and to respond
to security incidents. In the context of post-malware infection analysis, it involves tracking the
malware's activities, understanding its impact, and developing a response plan.

Steps in Post-Malware Infection Analysis
Here are some key steps in post-malware infection analysis:

1. Data Collection: Capture and store network traffic for analysis. This could include packet data,
log files, and other relevant information.

2. Analysis: Examine the collected data to understand the malware's behavior, impact, and
possible origin.

3. Reporting: Document your findings and share them with relevant stakeholders. This report
could be used for incident response, legal proceedings, or developing future prevention
strategies.

Exercise: For each step listed above, provide a detailed explanation of the process and its importance.

Tools for Network Forensics

Several tools can aid in post-malware infection analysis. These include packet analyzers like Wireshark,
network forensics platforms like NetworkMiner, and log analysis tools.

Exercise: Choose a tool suitable for network forensics and familiarize yourself with its features and
usage. Write a brief report on your findings.

Hands-On: Performing Post-Malware Infection Analysis
The best way to understand post-malware infection analysis is to do it yourself.

Exercise: Using a network forensics tool, analyze a sample pcap file containing malware traffic. Identify
the malware's activities and write a brief report on your findings.

Task: Review your organization's process for post-malware infection analysis. Identify any gaps in your
current process and develop a plan to address them.

Proactive Defense Against Malware and APTs

Proactive defense involves anticipating and thwarting potential attacks before they happen. By
constantly analyzing network traffic, setting up intrusion detection systems, and maintaining up-to-
date threat intelligence, you can identify and mitigate threats before they cause damage.

Proactive Measures for Network Defense
Some of the proactive measures for network defense include:
1. Regular Network Monitoring and Analysis: Continuously monitor and analyze network traffic
to identify suspicious activities and trends.

2. Threat Intelligence: Maintain up-to-date threat intelligence to understand the latest malware
and APT strategies and tactics.

143

ThinkCyber | NX Malware Analysis

3. Intrusion Detection Systems (IDS): Set up IDS to automatically alert on suspicious activities.

4. Regular Patching and Updates: Regularly update and patch all systems to protect against
known vulnerabilities.

5. User Education: Train users on safe internet practices and how to identify potential threats.

Exercise: Research each of the proactive measures listed above. Write a brief report on how each
measure contributes to network defense.

Implementing Proactive Defense Measures

Implementing proactive defense measures requires a comprehensive approach that includes
technology, processes, and people. It involves deploying the right tools, establishing effective
processes for monitoring and response, and training people to recognize and handle potential threats.

Continual Improvement of Defense Measures

Cyber threats are continually evolving, and so must your defense measures. Regular review and
improvement of your defense strategy are crucial to staying ahead of the threat landscape.

Task: Review the cybersecurity measures in place in your network. Identify areas for improvement and
develop a plan to implement these improvements. Remember, proactive defense is all about staying
one step ahead of potential threats.

By now, you should have a comprehensive understanding of network traffic analysis for malware
analysis. With these skills and knowledge, you are well-equipped to protect your network against
malware and APTs. Remember, cybersecurity is a continual process, and staying informed about the
latest threats and defense strategies is key to maintaining a robust defense.

Role of Darknet Traffic Analysis in Malware Detection

Darknet, in the context of network traffic, refers to a range of IP addresses that are allocated but not
in use by any legitimate host on the internet. Since these addresses are not associated with any
legitimate services, any traffic to these addresses is considered suspicious.

Exercise: Research and summarize the concept of darknet traffic. Discuss why this type of traffic might
be indicative of malicious activity.

Darknet Traffic and Malware Detection

Malware often generates network traffic as part of its operation, such as communicating with a
command-and-control server or scanning for new targets. Some of this traffic may end up directed
towards darknet IP ranges. By monitoring darknet traffic, security researchers can detect malware

activity and gather information about new threats.

Exercise: Write a brief explanation of how monitoring darknet traffic can aid in malware detection.
Include real-world examples if possible.

Tools and Techniques for Darknet Traffic Analysis

Several tools and techniques can be used for darknet traffic analysis, such as network traffic analysis
tools like Wireshark, darknet monitoring systems, and honeypots.

144

ThinkCyber | NX Malware Analysis

Hands-On: Analyzing Darknet Traffic

To better understand the role of darknet traffic in malware detection, let's get some hands-on
experience.

Exercise: Using a dataset of darknet traffic (you can find datasets on sites like CAIDA), analyze the traffic
for signs of malicious activity. Write a report on your findings, including any indications of malware and
the techniques you used to identify them.

Task: Review your organization's approach to darknet traffic analysis. If you do not currently monitor
darknet traffic, develop a plan for incorporating this technique into your network security strategy.

Darknet traffic analysis is a powerful tool for detecting and studying malware. By monitoring this

suspicious traffic, you can detect malware activity and gather valuable information about emerging
threats.

145

ThinkCyber | NX Malware Analysis

Introduction to YARA

YARA is a powerful tool used in malware research and threat hunting for identifying and classifying
malware samples. With YARA you can create descriptions of malware families or behaviors based on
textual or binary patterns. These descriptions, named rules, are highly flexible and can be as simple or
complex as necessary.

Basic Syntax
A YARA rule is composed of a set of strings and a boolean expression. The rule is considered a match
if the boolean expression is true. Here's a basic example:

rule ExampleRule

{

strings:

Smy_text_string = "malware"
condition:
Smy_text_string

This rule will match any file that contains the string "malware".

Rule Identifier and Keyword

Each rule starts with the keyword rule followed by a unique identifier. Rule identifiers must follow the
same lexical conventions of programming languages, like C or Python: they can contain any
alphanumeric character and the underscore character " _", but they cannot start with a digit.

Strings section
The strings section of a YARA rule is where you specify the byte sequences, text strings, or regular
expressions you want to search for.

strings:
Shex_string={E234 A1 C823FB}

Stext_string = "malware"
Sregex_string = /malw([a-z]re/

Condition section
The condition section of a rule specifies when the rule should be considered a match. This is where
the logic of the rule is defined.

condition:

Shex_string or (Stext_string and Sregex_string)

146

ThinkCyber | NX Malware Analysis

Wildcards and Jumps
YARA supports the use of wildcards (?) and jumps (-) in hexadecimal strings:

strings:

Shex_string_with_wildcard = { E234 ?? C8 23 FB }
Shex_string_with_jump ={E2 34 [1-5] C8 23 FB }

Case-insensitive Strings
YARA also allows you to specify case-insensitive strings using the nocase keyword:

rule example_rule

{
strings:
Sstring = "example" nocase

condition:
Sstring

String Counting
You can also use YARA to count occurrences of a specific string:

condition:
#text_string > 5

Set Operators
Set operators allow you to perform logical operations on sets of strings:

strings:
Ssetl = "stringl"
Sset2 = "string2"

Sset3 = "string3"

condition:
2 of (Sset*)

147

ThinkCyber | NX Malware Analysis

Modules
YARA includes a set of modules that provide additional functionality, like examining the structure of PE
files, computing hashes, and others.

import "pe"

rule ExampleRule
{
condition:
pe.number_of_sections >5

With these tools, YARA provides a powerful and flexible way to define custom rules for malware
detection and classification. From simple text or binary string matches to complex conditions based on
file structure or content, YARA allows malware researchers and threat hunters to build precise, efficient
rules for identifying and categorizing threats.

148

ThinkCyber | NX Malware Analysis

Use of Heuristics in Memory-based Malware Detection

Heuristics are rules or methods used to guide the search for solutions in complex problem spaces. In
the context of memory-based malware detection, heuristic methods involve using techniques and
patterns to identify potential malicious activities or anomalies that may suggest a system compromise.

Understanding Heuristic Techniques in Memory-based Malware Detection

Heuristic techniques in memory-based malware detection involve identifying patterns and behaviors
that are typically associated with malware. For instance, these may include:

= Unusual process behavior: Processes that are executing from suspicious locations, making
unexpected network connections, or exhibiting other unusual behaviors.

= Memory anomalies: Unexpected or anomalous memory usage, such as excessive memory
utilization or allocation, which might suggest a buffer overflow or other exploit.

= APl calls: Certain API calls are commonly used by malware, such as those for creating remote
threads, reading/writing memory, or making network connections.

Popular Heuristics-Based Tools and Techniques

Various tools and techniques can be used to apply heuristics in memory-based malware detection.
Some popular choices include:

= Volatility Framework: This memory forensic tool can be used with various plugins to detect
suspicious processes, DLLs, network connections, etc.

= YARA: This is a tool aimed at helping malware researchers identify and classify malware
samples. YARA rules can be written to match on strings or binary data, making it highly flexible.

= Al and Machine Learning: More advanced heuristic techniques may employ Al or machine
learning to identify patterns that are indicative of malware.

Exercise: Getting Familiar with YARA
1. Download and install YARA.
2. Write a simple YARA rule to detect a known string in a file.
3. Test your YARA rule against a sample file.

Applying Heuristics with Volatility
Volatility can be used to apply heuristic techniques in memory-based malware detection. For instance,
you could use Volatility to:

= |dentify processes running from unusual locations

= Detect processes with unexpected parent-child relationships
= Find hidden or unlinked processes

= |dentify suspicious API calls

Exercise: Using Volatility to Apply Heuristics
1. Obtain a memory dump from an infected system (or use a known infected sample).
2. Use Volatility to identify any processes running from unusual locations or with unexpected
parent-child relationships.
3. Identify any hidden or unlinked processes.
4. Extract API call information for suspicious processes and investigate.

149

ThinkCyber | NX Malware Analysis

Advanced Heuristic Techniques
Advanced heuristic techniques may involve more sophisticated analysis, such as:

= Statistical analysis: For example, identifying unusual system behavior based on statistical
norms or baselines.

= Al or machine learning: These techniques can be used to classify behaviors or patterns based
on previously learned data.

Exercise: Exploring Advanced Heuristics
1. Usingthe Volatility output from Exercise, perform statistical analysis to identify any anomalous
behavior. For example, you might identify unusual process activity based on process count,
memory usage, etc.
2. Explore available Al or machine learning tools for malware detection. How might these be
applied to your analysis?

More Advanced Memory Artifact Analysis

Advanced memory artifact analysis may involve looking at unallocated memory, investigating memory
mapped files, looking at hardware and interrupt handlers, or using other advanced techniques.

Exercise: Investigating Unallocated Memory
1. Use Volatility's 'yarascan' plugin to scan the unallocated memory for any known malware
signatures.
2. Extract any interesting memory ranges and use a hex editor to further investigate.

150

ThinkCyber | NX Malware Analysis

Advanced Static Malware Analysis

Advanced static analysis techniques can also be used to identify obfuscated or hidden code within the
malware, as well as to detect and analyze any encryption or packing techniques used to disguise the
malware's behavior. Unlike dynamic malware analysis, which involves executing malware in a
controlled environment, static analysis focuses on the examination of the malware's static properties,
such as its file structure, code logic, API calls, and dependencies. This analysis technique helps security
researchers, analysts, and antivirus vendors understand the inner workings of malware and develop
effective countermeasures.

Understanding the PE (Portable Executable) Files
To help you understand better, let's make an analogy with a city's layout.

1. DOS Header
Think of the DOS Header as the old part of a city. Just like historical buildings that tell tales of
the city's past, the DOS Header tells the tale of the file's DOS compatibility. It's not typically
used in modern applications but still exists due to backward compatibility.

2. PE Signature
The PE Signature is like the city's emblem or crest, signifying the legitimacy of the PE file. It's a
quick way for the system (or city officials) to identify that the file (or city) is what it claims to
be.

3. COFF Header
The COFF Header could be compared to a city's census data. It contains crucial demographic
details about the file, like the architecture it's designed for (x86, x64), its physical size, the
timestamp when it was created, etc.

4. Optional Header
The Optional Header is similar to the city's infrastructure plan. It contains key pointers, such
as where the main function (city hall) is, where to load the file in memory (where to build the
city on land), the size of the entire image when loaded into memory (city's total planned area),
etc.

= Magic (2 bytes): The first 2 bytes represent the Magic field that determines if the
image is a PE32 or PE32+ image. 0x10b represents PE32, and 0x20b represents PE32+.

= Major Linker Version (1 byte) and Minor Linker Version (1 byte): The version of the
linker that was used to link the image.

= SizeOfCode (4 bytes): The total size of all code sections.

= SizeOflnitializedData (4 bytes): The total size of all initialized data sections.

= SizeOfUninitializedData (4 bytes): The total size of all uninitialized data sections.

= AddressOfEntryPoint (4 bytes): The address of the entry point relative to the image
base when the executable file is loaded into memory. It tells the computer where to

start executing the program.

= BaseOfCode (4 bytes): The address of the beginning of the code section, relative to
the image base.

151

ThinkCyber | NX

= BaseOfData (4 bytes): The address of the beginning of the data section, relative to the

Malware Analysis

image base. This field is not present in PE32+ format.

5. Section Headers/Table

This is the city's map or directory. It gives a detailed layout of each section of the file, showing
where you can find the code (business district), data (residential areas), resource data

(recreational areas), etc.

Section Data

These are the actual districts or zones of the city. Each section plays a different role. The .text
section (business district) contains the executable instructions, the .data section (residential
area) holds global and static variables, and the .rsrc section (recreational area) contains

resources like icons, images, and menus.

An Example - PE File of Notepad

Let's say you're a city planner and your task is to understand the city layout of a well-known small town
called 'Notepad'. It's a simple town but has all the important city elements.

You start by checking the old part of the town (DOS Header) and find an old monument displaying a

message, "This program cannot be run in DOS mode".

File Settings 7

H

. W

we' CFF Explorer VIl - [notepad.exe]

= Iﬂﬁle: notepad _exe

NI R

— (= Dos Header Of faat
(= Nt Headers 10000000
2] File Header gooooolo | Be 00 00 OO 0O OO 00 0O 40 00 00 00 0O OO0 OO QO |@.......
=] Optional Header gggggg%g
=) Data Directories [x] 00000040
— L& Section Headers [x] a00000sa
— |2 Import Directory 00000060
— |2) Resource Directory gggggg;g
— |2 Exception Directory poooooan rl 820020 12H=008
— |2 Relocation Directory aoooooaD 0 1-Bho®Zn | -7 1583
- 0oooooED 018" G980 En-0s
fDEbug Directory 000000C0 01 £ 5050 IVEz508
— “,(Mdrm Converter 10000000 0 1«fiz0@8Rich{008
— “) Dependency Walker
- ‘ﬁ:lhEtﬂnr . Sel Start: 00000040 Size: 00000039
f

Next, you verify the city's

emblem (PE Signature) that reads "PE\O\O".

File Settings ?

)

we' CFF Explorer VIII - [notepad.exe]

L 3 Data Directories [
— (=] Section Headers [x]

notepad.exe

Qffsst o1 2 3 4 5 6 7 B8 9 & B C D E F Ascii
— 2 Import Directory 10000000
— (2 Resource Directory 0000ooED
— (3 Exception Direct 0o0000Fn
cepton Drectory 00000100

— 2 Relocation Directory ao000tio
— 2 Debug Directory 0oopo120
— '*‘)),Md'm(:ommer 00000130
— o (100011 |
_ ;;"hE‘H“r gooooien | OO0 10 01 0O OO OO0 OO0 OO0 00 00 10 00 OO0 00 00 00 oo....... o.....
— “k Identifier

& - i
_"‘LI Add Sel Start: 000000F% Size: 00000004

Moo e =

152

ThinkCyber | NX

You then move onto the town's census data (COFF Header) and find out it was last rebuilt (modified)

Malware Analysis

on September 29, 2017 at 16:41:56.

w' CFF Explorer VI - [notepad.exe]

S

= E File- notepad exe 63
2] Dos Header

=] Nt Headers

(= File Header

=] Optional Header

(= Data Directories [x]
=] Section Headers [«]

— | Import Directory

— |2 Resource Directory

— |2 Exception Directory

— | Relocation Directary

— |2 Debug Directory
'*‘)),Md'm Converter
%}, Dependency Walker
— %) Hex Editor

File Settings 7

H

-

Offset]

hscii

ooooonsn
oo0000an
ooooooen
ooooooco
ooooooon
noo0o0ED
ooo000Fn
ooooo1o0
oooooi1o
oooooizan
ooo00130
oooon140
ooo001s0
noo00len

rl: &=0@E0 | 2Hz088
0 1-fho@20 | -fR1o0es
01 'R a098{0 Enes
0 1iRfo9sn IVizoes

Sel Start:

0000onrFc

Size: 00000014

You take a look at the city's infrastructure plan (Optional Header) and find that the city hall (main
function). The city is planned to be built on a 64-kilobyte plot (load into a 64KB memory space).

w' CFF Explorer VIl - [notepad.exe] — O
File Settings ?
H notepad.exe
-
B [File: notepad_exe 2 m & EE © P =
[[Dos Header Offsst | 0 1 2 3 4 5 6 7 8 9 & B C D E F | Asoii
=] Mt Headers 000000CD | 08 94 &1 FL 66 F& 49 FD 08 94 56 FO 74 F6 49 EO |0 IIff0020 1Vaz00a8
2] File Header ooooooDo | 08 94 AB F1 74 Fe 49 FO 52 69 63 69 7B Fe 49 FO 0 1«Az0@ERich {088
=] Optional Header gggggg%g
=l Data Directories [] anoonino
— (& Section Headers [x] oooooiin
|2 Impert Directory aooooizo
— |2 Resource Directory ggggg%ig
— | Exception Directory nooonisn
— |2 Relocation Directary ooo0olen
(- " goooolz7o
..q’lDebug Directory 00000180
— “‘{,Mdm(:ovwerler oooonian
— *“k Dependency Walker
7*’}'“5‘"“ Sel Start: 00000110 Size: 00000013
W

Next, you study the city's map (Section Headers/Table) and see different districts: .text (business

district), .data (residential area), .rsrc (recreational area), and others.

w' CFF Explorer VIl - [notepad.exe]

— (=] Section Headers]
| Import Directory

— |2 Resource Directory
— |Z) Exception Directory
— |2 Relocation Directory
— () Debug Directory

— '*‘ﬁ,Md'm Converter
— %, Dependency Walker
—), Hex Editor

— 4, Identifier

— '~2,, Import Adder

Ol T L

File Settings 7
B ®
L (=] Data Directories [x] 63

Of f=et

00000190
00000140
o00001eo
0o00001co
00000100
000001ED
000001Fo
ooooo2oo
oooooz21o
noooozzo

Sel Start:

gnooozon

Size: 00000005

Finally, you explore each district (Section Data). The business district (.text) is bustling with activities
(executable instructions). The residential area (.data) is calm, with people (variables) living their lives.

153

ThinkCyber | NX Malware Analysis

The recreational area (.rsrc) is vibrant, filled with icons and menus (public resources) for the townsfolk
to enjoy.

By breaking down a complex topic into simpler, more relatable elements, we hope you now have a
better understanding of what a PE file is, how it is structured, and why each part is important.

A PE Import and Export
The Import Table

The Import Table is a list inside a PE file (a program) that keeps track of the shared functions it needs
to run. Let's think of the Import Table as a grocery list you make before going to the store. This list
ensures that you remember to get all the ingredients (functions) you need to cook your dinner (run
your program).

For example, let's consider a simple program that needs to print something on the screen and check
the current time. To do this, it might need two functions: printf (to print) and time (to check the time),
both of which are stored in a shared location. The program's Import Table will list these functions,
indicating that they are needed for the program to run properly.

w' CFF Explorer VIl - [notepad.exe] — O X
File Settings 7
H notepad.exe x
2%
Module Name Impaorts OFTs TimeDateStamp | ForwarderChain | Name RVA FTs (14
7 E File: not exe M/A DO01E914 0001E918 D001E9NC 0001E920 ODO1ES
— (=) Dos Header 00020044 ! q
=) Nt Headers szAnsi (nFunctions) Dword Dword Dword Dword Dword
E File Head
3 Ie. Sacer ADVAPI3ZdI 14 0001F720 00000000 00000000 00020192 0001 AL
=] Optional Header
(=] Data Directories [x] KERMEL32.dll 66 0D01FEBE 00000000 00000000 00020614 0001A°
| Section Headers GDI32.dlI 2 0D01F200 00000000 00000000 00020766 00D1A
— @Import Directory
— |2 Resource Directory USER32.dII 74 0001FB58 00000000 00000000 00020C44 00014 v
— |2 Exception Directory < >
— |2 Relocation Directory
— |2 Debug Directory OFTs FTs (IAT) Hint MName 2
| %, Address Conv
& ;‘;‘:ﬁ D0DTF190 0001A0CO D00TFB70 D001FBT2
‘s Dependency
— *‘i_-,Hex Editor Cword Qword Word szhnsi
— L Mdentifier 0770 0770 (0311 SendMessageW
— '*‘:l_-, Import Adder
| 9, Quick Disassembler 0ODDDODODDO212EE | ODDDOOODDDO212EE | 0244 LoadlconW
—) Rebuilder 0ODDOODODO0212E0 | DODDODDODD0Z1ZED | D24C LoadimageW
— '~‘j;, Resource Editor W
The Export Table

On the other hand, the Export Table is a list inside a PE file that shows which functions it is offering to
other programs. It's akin to a store catalog displaying the items available for customers.

How Do Import and Export Tables Work Together?

When a program (with its Import Table) is run, the operating system checks the table to see which
functions are needed. It then looks at the Export Tables of other programs to find these functions. If it
finds a match, it creates a connection between the two programs, allowing the first program to use
the function it needs. It's like going to the store with your shopping list and picking up the items you
need from the shelves.

154

ThinkCyber | NX Malware Analysis

Why Are Import and Export Tables Important?

Import and Export Tables are essential for program interoperability and efficiency. They allow programs
to share common functions, reducing redundancy and saving memory. Without them, each program
would have to include its own versions of all the functions it needs, leading to a large, inefficient
system. It's the same reason why in a city, you wouldn't want every building to have its own power
station or water treatment plant.

Relocations in PE Files

If you've ever tried solving a jigsaw puzzle, you know that it involves placing pieces in certain positions
to create a complete picture. But what if these pieces could fit in more than one place and still form a
coherent image? This is quite similar to how relocations in Portable Executable (PE) files work, allowing
programs to function even when loaded into different places in a computer's memory. For malware
analysts, understanding relocations is like getting a crucial hint for solving a tricky puzzle.

Understanding Relocations

Relocations are sections within a PE file that provide the flexibility for the program to function
correctly, irrespective of where it's loaded into memory. In the context of malware, this ability can be
used to evade detection, making relocations a significant point of interest for analysts.

For example, imagine a sneaky piece of malware designed to load itself into a different location in
memory each time it's executed, making it harder to detect. This malware would rely on relocations
to adjust its code and function correctly, regardless of where it ends up in memory.

Analyzing the Relocation Table
A malware analyst can use various tools (like PE Explorer, PEview, or Ghidra) to open a PE file and
scrutinize its sections, including the ".reloc' section where the relocation table resides.

1. PEview - C:\Users\Malware\Desktop\ basicstatic\ basicstatic\FILEDS — m} X
File View Go Help

No0oO MM H||le=o

=- FILEOS pFile Raw Data Value ~

IMAGE_DOS_HEADER 00027000 00 10 00 00 64 00 00 00 2F 30 49 30 5B 30 68 30d.. _/010[0hO

MS-DOS Stub Program 00027010 70 30 80 30 94 30 A4 30 B130BD30D030DF 30 p0.0.0.0.0.0.0.0

+- IMAGE_NT_HEADERS 00027020 E5 30 EA30FC 30 03 31 15 31 34 3147 31583 .0.0.0.1.141G1[1

- IMAGE_SECTION_HEADER text 00027030 6C 31 CT 31 DT 1 DE 31 E4 31 59 32 61 32 67 32 11.1.1.1.1Y2a2g2

i IMAGE_SECTION_HEADER .rdata || 00027040 72 32 7F 32 87 32 95 32 0A 32 OF 32 Ad 32 AF 32 r2 2.2.2.2.2.2.2

IMAGE_SECTION_HEADER .data 00027050 BC 32 CE632DB32ET 32 ED320F 3321337033 .2.2.2.2.2.313}3
IMAGE_SECTION_HEADER .reloc || 00027060 9A 33 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 .3..............

- SECTION text 00027070 00 00 00 00 OO0 00 OO0 00 00 OO 00 OO 00 OO OO OO

% SECTION _rdata 00027080 00 00 00 00 00 OO OO OO 0O 0O OO OO QO QO OO QO

SECTION _data 00027090 00 00 00 00 OO0 OO OO OO 0O 0O OO OO QO QO QO QO

58 SECTION reloc] 000270A0 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00
000270B0 00 00 00 00 00 0O 0O 0O 00 00 00 OO 00 QO OO QO
000270C0 00 00 00 00 00 0O 0O 0O 00 00 00 OO 00 QO QO QO
000270D0 00 00 00 00 00 0O 0O 0O 00 00 00 OO 00 QO OO QO
000270E0 00 00 00 OC OC OO 0O 0O 00 00 00 OO 00 0O QO QO
000270F0 00 00 00 00 00 OO OO0 OO 00 00 00 00 00 00 00 QO e

Viewing SECTION .reloc

Decoding Relocation Entries

Each relocation entry within a block is a piece of the puzzle. It comprises two parts: the type and the
offset. The type signifies the kind of relocation, and the offset indicates the location within the memory
page that needs adjustment if the program is relocated.

155

ThinkCyber | NX Malware Analysis

Applying Knowledge of Relocations to Malware Analysis
The relocation table can provide valuable hints for analysts. For instance, an unusually large number
of relocations might suggest that the malware is trying to evade detection.

Another crucial point is that even if the malware uses packing to hide its original code, the relocation
entries often provide clues about the hidden code's structure and function, making the unpacking
process more manageable.

Resource in PE

Resource management in PE files, refers to the organization and handling of various embedded
resources within an executable file. In the context of malware analysis, resource management
becomes crucial for several reasons:

ws' CFF Explorer VIIl - [notepad.exe] - [m] X
File Settings 7
H FILEDS notepad_exe X
28 L
MName Virtual Size Virtual Address | Raw Size Raw Address | Reloc Address | Linenumbers | Re
= - notepad A
2 EZIE- not e 00000240 00000248 000002ZAC 000002E0 00000284 00000288 000002BC 00
— =) Dos Header
= Nt Headers Byte[8] Dword Dword Dword Dword Dword Dword W
= File Header
_ X text D0018FCE 00001000 00019000 00000400 00000000 00000000 00
=l Optional Header
(= Data Directories [x] .rdata 00007602 00014000 00007800 00013400 00000000 00000000 00
B Section Headers k] data 00002014 00022000 00000C00 00020C00 00000000 00000000 00
— |2 Import Directory
— [Resource Directary .pdata 000008DC 00025000 00000ADD 00021800 00000000 00000000 00
— (CDException Cirectory rsrc 00019CED 00026000 0D019E0D 00022200 00000000 00000000 o0
— [Relocation Directory
|— [5)Debug Directory reloc 0000021C 00040000 00000400 0003C000 00000000 00000000 00
— *‘j_-,M*e;s Converter
— *‘:l_-,[)eperﬂency Walker
— 4, Hex Editor
— 4, Identifier
— *‘:l_-,lrrporl Adder
— *‘:l_-,&.ick Disassembler vl *

1. Identification of Malicious Artifacts: Malware often disguises itself by hiding malicious code
or data within resources. By analyzing the resources, malware analysts can identify suspicious
or anomalous content that may indicate the presence of malware. For example, an executable
file may contain a hidden resource that holds encrypted or obfuscated payload.

2. Analysis of Embedded Payloads: Some malware strains store their malicious payloads, such
as additional executable files or scripts, within resources. Resource management allows
analysts to extract and examine these payloads, helping in understanding the behavior,
capabilities, and intentions of the malware.

3. Detection of Anti-Analysis Techniques: Malware authors may employ various anti-analysis
techniques to evade detection or hinder analysis. These techniques can include encrypting or
compressing the malicious code within a resource. By analyzing the resource management
structure, analysts can identify such obfuscation techniques and develop countermeasures to
unpack or decrypt the hidden content.

4. Localization and Contextual Information: Malware often targets specific regions or languages.

Resource management plays a significant role in localization by allowing malware authors to
embed translated strings, region-specific information, or configuration data within resources.

156

ThinkCyber | NX Malware Analysis

Analyzing these resources helps in understanding the intended target and the context in which
the malware operates.

5. Visual and Behavioral Analysis: Malicious code may utilize resources for visual elements such
as fake dialog boxes, icons, or images to deceive users or to mimic legitimate applications. By
analyzing these resources, malware analysts can identify visual anomalies or inconsistencies,
which can aid in distinguishing malware from legitimate software.

6. Signature Creation and Detection: Resources can provide unique signatures or patterns that
help in the detection and classification of malware. By examining the resource management
structure and its contents, analysts can extract relevant information to create signatures or
detection rules for security tools, enhancing the ability to identify similar malware samples in
the future.

Windows Loader

When you run a program on your Windows computer, the system doesn't just magically know how to
execute the code; instead, it relies on a process called loading, specifically facilitated by the Windows
Loader. As a malware analyst, understanding this process is crucial.

Introduction to Windows Loader

Windows Loader is a component of the operating system responsible for loading and starting
programs. It's like the stage manager in a theater production: it doesn't perform any roles, but it
ensures that the actors (programs) get on the stage (into memory) and start performing at the right
time.

What Windows Loader Does
The Windows Loader performs a series of actions to execute a Portable Executable (PE) file:

1. Reading the PE File: The Windows Loader starts by reading the PE file from disk, beginning
with headers that contain metadata about the file.

2. Mapping the PE File into Memory: It then creates an area in memory where it maps the
executable file. It's like creating a workspace on a desk before starting a project.

3. Relocating Addresses: If necessary, the Loader will adjust addresses in the file to match where
it's loaded in memory.

4. Resolving Imports: Next, the Loader identifies and locates any additional files the program
needs to run (like DLLs). It's like gathering all the necessary tools before starting a DIY project.

5. Initializing: Finally, the Loader hands over control to the program, letting it initialize itself and
start running.

157

ThinkCyber | NX Malware Analysis

How Malware Misuses the Windows Loader
Now that we understand the basics, let's explore how malware can misuse the Windows Loader:

1. DLL Search Order Hijacking: In the "Resolving Imports" step, the Loader looks for DLLs in a
specific order, starting in the program's directory, then looking in system directories. Malware
can exploit this by placing a malicious DLL with the same name as a legitimate one in the
directory the Loader checks first.

2. DLL Injection: Some malware might inject malicious code into a running program by forcing it
to load a malicious DLL. This is like sneaking an extra actor on stage in the middle of a scene.

3. PE File Modification: Malware can modify the PE file's headers to trick the Loader into
executing malicious code.

Windows Loader and Malware Analysis

Understanding the Loader's processes can help a malware analyst detect and understand these kinds
of attacks. They can look for suspicious DLLs in unusual locations, unexpected modifications to PE files,
or signs of DLL injection.

Analysts can use tools like Process Monitor to see in real time which files are being loaded by a process
or PEview to inspect a PE file's headers manually.

PE File Analysis in Practice
When analyzing a PE file, the goal is to look for anything unusual or suspicious. For instance:

1. Unexpected or Misplaced Code: Finding code in a section where it typically doesn't belong
can be a red flag. For example, the .rsrc section usually contains resources like icons, so finding
executable code here is suspicious.

2. Anomalies in the Import Table: The Import Table lists the DLL files the program needs.
Malware often uses specific DLLs or functions that can be a giveaway. Also, a lack of imports
may suggest the file is packed or encrypted.

3. Packers and Cryptors: These tools can hide or obfuscate malware. PEiD can help identify them.
They're not always indicative of malicious intent (some legitimate software also uses them),
but they warrant a closer look.

4. Investigating the Entry Point: The entry point is where the program starts executing. By

disassembling the code at this point, you can follow the program's logic and look for any
suspicious activities.

158

ThinkCyber | NX Malware Analysis

Understanding Packers
A packer essentially performs two main tasks:

1. Transformation: The packer takes an input, typically executable code, and applies a specific
transformation to it. The purpose of this transformation is to obscure the code, making it more
challenging for both human analysts and automated tools to comprehend its functionality.

2. Generation of a new executable: The packer produces a new executable file that includes both
the transformed code and a routine to reverse the transformation during runtime. This
unpacking routine ensures that the original code is restored in memory and can be executed
normally.

To illustrate this concept, let's consider a basic example of a Python packer that utilizes base64
encoding as the transformation method:

import base64
import os

def pack(input_file, output_file):
with open(input_file, 'rb') as f:
data = f.read()

Transform the data (in this case, base64 encode it)
transformed_data = base64.b64encode(data)

Create the unpacking routine and payload
unpacking_routine ="""
import base64

def unpack():
data = b'{0}'
return base64.b64decode(data)
""" format(transformed_data)

Write the payload to the output file
with open(output_file, 'w') as f:
f.write(unpacking_routine)
if _name__=='__main__"
pack('input.py', 'output.py')

This script takes an input Python script (input.py), encodes it using base64, and generates a new
Python script (output.py) that contains the base64-encoded script as a string along with a function to
decode and execute it.

Real-world packers employ more intricate transformation techniques for obfuscation and may include
additional features to detect and evade analysis tools.

159

ThinkCyber | NX Malware Analysis

Binary

Digital Sizes

Digital size units are used to represent the amount of data or storage capacity in computers and digital
devices. The most basic unit is the bit, which can have a binary value of 0 or 1. Nibbles, bytes, kilobytes,
megabytes, gigabytes, and terabytes are progressively larger units used to represent larger amounts
of data. While the base-10 system is commonly used in the computer storage industry, the base-2
system is also used, especially in computer memory and programming contexts.

Unit Size (in bits)

Bit 1

Nibble 4

Byte 8

Kilobyte (KB) 8,192 bits or 1,024 bytes

Megabyte (MB) 8,388,608 bits or 1,048,576 bytes

Gigabyte (GB) 8,589,934,592 bits or 1,073,741,824 bytes
Terabyte (TB) 8,796,093,022,208 bits or 1,099,511,627,776 bytes

Bit: A bit is the smallest unit of digital information and represents a single binary digit, which can be
either O or 1.

Nibble: A nibble is a group of four bits, which can represent a single hexadecimal digit (0-9 and A-F).

Byte: A byte is a group of eight bits, which is the basic unit of digital storage in most computer systems.
A byte can represent a single ASCII character or a small number.

Kilobyte (KB): A kilobyte is equal to 1,024 bytes or 8,192 bits. It is commonly used to represent small
files, such as text documents or images with low resolution.

Megabyte (MB): A megabyte is equal to 1,048,576 bytes or 8,388,608 bits. It is commonly used to
represent larger files, such as music or high-resolution images.

Gigabyte (GB): A gigabyte is equal to 1,073,741,824 bytes or 8,589,934,592 bits. It is commonly used
to represent even larger files, such as videos or software applications.

Terabyte (TB): A terabyte is equal to 1,099,511,627,776 bytes or 8,796,093,022,208 bits. It is
commonly used to represent very large amounts of data, such as in data centers or cloud storage.

160

ThinkCyber | NX Malware Analysis

Understanding Binary Numbers

The world of technology and computers can often seem like a foreign language, especially when it
comes to binary numbers. But fear not! Understanding binary numbers isn't as daunting as it may
seem.

What are Binary Numbers?

Binary numbers are a way of representing numbers using only two digits: 0 and 1. This system, called
the binary numeral system, is the foundation of digital technology and computers. In contrast, the
decimal system we're more familiar with uses ten digits (0-9) to represent numbers.

The binary system is based on powers of 2, whereas the decimal system is based on powers of 10. For
example, in the decimal system, the number 234 can be broken down as follows:

(2 x1072) + (3 x 1071) + (4 x 1070) = 200 + 30 + 4 = 234
Similarly, a binary number like 1011 can be broken down using powers of 2:
(1x273)+(0x272)+(1x271)+(1x270)=8+0+2+1=11
Converting Binary to Decimal
Let's dive into the process of converting a binary number to a decimal number with an example.
Suppose you have the binary number 11010. Here's a step-by-step guide on how to convert it to

decimal:

Write down the binary number and its corresponding power of 2 for each digit, starting from the right
(270) and moving to the left:

- - - 1 1 0 1 0
128 64 32 16 8 4 2 1

Multiply each binary digit by its corresponding power of 2:
(1x274) + (1 x 273) + (0 x 2A2) + (1 x 271) + (0 x 2°0)

Calculate the resulting decimal value:
16+8+0+2+0=26

So, the decimal equivalent of the binary number 11010 is 26.

Converting Decimal to Binary

Now let's go the other way and convert a decimal number to binary. Suppose we want to convert the
decimal number 45 to binary:

Find the highest power of 2 less than or equal to the number (in this case, 25 = 32).

Write down the digit 1 in the binary representation and subtract the value of the power of 2 from the
decimal number: 45 - 32 =13.

Repeat steps 1 and 2 with the remaining value (13) and continue the process until the remaining value
is O0:

273 = 8 (less than or equal to 13): Write down 1, subtract 8 from 13: 13-8=5

161

ThinkCyber | NX Malware Analysis

272 =4 (less than or equal to 5): Write down 1, subtract 4 from 5:5-4=1
271 = 2 (greater than 1): Write down 0

270 =1 (equal to 1): Write down 1,

subtract 1 from1:1-1=0

Now that the remaining value is 0, arrange the binary digits in the order they were found:
101101

So, the binary equivalent of the decimal number 45 is 101101.

Converting Decimal to Binary

Converting decimal numbers to binary and vice versa is an important skill in computer science and
digital electronics. Decimal numbers are the numbers we use in everyday life, while binary numbers
are used by computers to represent data and perform calculations.

To convert a decimal number to binary, we use the division and remainder method. Here are the steps:

1. Divide the decimal number by 2.

Write down the quotient and the remainder. The remainder will either be 0 or 1.

3. Continue dividing the quotient by 2 and writing down the quotient and remainder until the
quotient is 0.

4. The binary number is the sequence of remainders read from bottom to top.

N

For example, to convert the decimal number 23 to binary:

23 +2 =11, with a remainder of 1
11+ 2 =5, with aremainder of 1
5+ 2 =2, with a remainder of 1

2 +2 =1, with a remainder of 0
1+ 2 =0, with a remainder of 1

The binary number is 10111.
To convert a binary number to decimal, we use the positional value method. Here are the steps:

1. Write down the binary number.

2. Assign each digit a positional value, starting from 270 (1) on the right and increasing by a power
of 2 for each digit to the left.

3. Multiply each digit by its positional value.

4. Add up the products to get the decimal equivalent.

For example, to convert the binary number 10111 to decimal:
1x2M =16

0x273=0

1x272=4

1x27M =2

1x270=1

The decimal equivalentis 16 +4 + 2 + 1 = 23,

162

ThinkCyber | NX Malware Analysis

Converting Text to Binary

Converting text to binary involves the process of encoding each character of the text into its binary
representation. The binary representation of a character is a sequence of Os and 1s that represents the
character's ASCII code.

The ASCII code is a standard code used to represent characters in digital devices. Each character is
assigned a unique numerical value between 0 and 127, which can be represented in binary using 7
bits.

Decimal | Hex Char | Decimal | Hex Char Decimal | Hex Char | Decimal | Hex Char
0 0x00 | NUL | 32 0x20 | SPACE | 64 0x40 | @ 96 0x60 | °
1 0x01 | SOH | 33 0x21 | ! 65 0x41 | A 97 Ox61 | a
2 0x02 | STX | 34 0x22 | " 66 0x42 | B 98 0x62 | b
3 0x03 | ETX | 35 0x23 | # 67 0x43 | C 99 0x63 | c
4 0x04 | EOT | 36 0x24 | S 68 0x44 | D 100 0x64 | d
5 0x05 | ENQ | 37 0x25 | % 69 Ox45 | E 101 Ox65 | e
6 0x06 | ACK | 38 0x26 | & 70 Ox46 | F 102 0x66 | f
7 0x07 | BEL | 39 0x27 | 71 0x47 | G 103 Ox67 | g
8 0x08 | BS 40 0x28 | (72 0x48 | H 104 0x68 | h
9 0x09 | HT 41 0x29 |) 73 0x49 | | 105 Ox69 | i
10 OxO0A | LF 42 Ox2A | * 74 Ox4A | J 106 Ox6A | j
11 0x0B | VT 43 Ox2B | + 75 Ox4B | K 107 0x6B | k
12 Ox0C | FF 44 0x2C |, 76 Ox4C | L 108 ox6C | |
13 Ox0D | CR 45 0x2D | - 77 0x4D | M 109 Ox6D | m
14 OxOE | SO 46 Ox2E | . 78 Ox4E | N 110 Ox6E | n
15 OxOF | SI 47 Ox2F |/ 79 Ox4F | O 111 Ox6F | o
16 Ox10 | DLE | 48 0x30 | O 80 Ox50 | P 112 0x70 | p
17 Ox11 | DC1 | 49 0x31 |1 81 0x51 | Q 113 0x71 | q
18 0x12 | DC2 | 50 0x32 | 2 82 0x52 | R 114 Ox72 |r
19 0x13 | DC3 | 51 0x33 |3 83 Ox53 | S 115 0x73 | s
20 Ox14 | DC4 | 52 0x34 | 4 84 Ox54 | T 116 0x74 | t
21 0x15 | NAK | 53 Ox35 | 5 85 Ox55 | U 117 Ox75 |u
22 Ox16 | SYN | 54 0x36 | 6 86 0x56 | V 118 Ox76 | v
23 Ox17 | ETB | 55 0x37 | 7 87 0x57 | W 119 Ox77 | w
24 0x18 | CAN | 56 0x38 | 8 88 Ox58 | X 120 Ox78 | x
25 0x19 | EM | 57 0x39 |9 89 Ox59 | Y 121 Ox79 |y
26 Ox1A | SUB | 58 Ox3A | : 90 Ox5A | Z 122 Ox7A | z
27 Ox1B | ESC | 59 0x3B | ; 91 Ox5B | [123 0x7B | {
28 Ox1C | FS 60 0x3C | < 92 0x5C |\ 124 0x7C | |
29 Ox1D | GS 61 Ox3D | = 93 0x5D |] 125 0x7D | }
30 Ox1E | RS 62 Ox3E | > 94 Ox5E | A 126 Ox7E | ~
31 Ox1F | US 63 Ox3F | ? 95 Ox5F | _ 127 Ox7F | DEL

To convert text to binary, follow these steps:
1. Choose the text that you want to convert to binary.

2. Convert each character in the text to its ASCIl code using an ASCII table. For example, the letter
"A" has an ASCII code of 65.

163

ThinkCyber | NX Malware Analysis

3. Convert the decimal value of the ASCII code to binary. To do this, divide the decimal value by
2 repeatedly and note down the remainder each time until the quotient becomes 0. Then,
write down the remainders in reverse order to obtain the binary representation of the ASCII
code.

For example, the ASCII code for "A" (65) can be converted to binary as follows:

65+2=32(0)
32+:2=16(0)
16+2=8(0)
8+2=4(0)
4+2=2(0)
2+2=1(0)
1+2=0(1)

Therefore, the binary representation of "A" is 01000001.

Repeat steps 2 and 3 for each character in the text to obtain the binary representation of the entire
text.

For example, if we want to convert the text "HELLO" to binary, we would first convert each character
to its ASCIl code using an ASCII table:

Then, we would convert each decimal value to binary using the method described above:

72 =01001000
69 = 01000101
76 =01001100
76 =01001100
79=01001111

Therefore, the binary representation of "HELLO" is 01001000 01000101 01001100 01001100
01001111.

164

ThinkCyber | NX Malware Analysis

Practical Applications of Binary Conversion
Binary conversion has practical applications in various fields, especially in computer science and digital
electronics. Some of the practical applications of binary conversion are:

e Data storage and transmission: Computers use binary digits to represent data and store it in
memory. Binary conversion is used to convert data from its original form, such as text, images,
and audio, into a binary format that can be stored and transmitted.

e Digital circuits and logic design: Binary conversion is used to design and analyze digital circuits
and logic gates. Boolean algebra and logic gates operate on binary inputs and produce binary
outputs.

e Computer programming: Binary conversion is used in computer programming to represent
numbers and characters in binary format. For example, the ASCII code assigns each character
a unique binary code, allowing computers to represent and manipulate text.

e Encryption and security: Binary conversion is used in encryption algorithms to convert
plaintext into a binary format that can be encrypted and transmitted securely. Binary digits are
combined with cryptographic keys to create encrypted data.

e Networking: Binary conversion is used in networking protocols to represent IP addresses,

subnet masks, and other network parameters. These values are often represented in binary
format to facilitate routing and communication between different network devices.

165

ThinkCyber | NX Malware Analysis

Hex Conversion

Introduction to Hexadecimal Numbers

In the world of computer science and digital electronics, there are many different number systems
used to represent numerical values. One of these number systems is hexadecimal, which is widely used
in computer programming and digital electronics.

What are Hexadecimal Numbers?

Hexadecimal, or simply hex, is a base-16 number system that uses 16 unique symbols to represent
values. These symbols are the digits 0 to 9 and the letters A to F, where A represents the decimal value
of 10, B represents 11, and so on up to F, which represents the decimal value of 15. Hexadecimal
numbers are often written with a prefix of "0x" to distinguish them from decimal or other number
systems.

Properties of Hexadecimal Numbers

Hexadecimal numbers are used in computer programming and digital electronics for several reasons.
One of the main reasons is that they can represent large binary values more compactly. For example,
one byte of data in binary can be represented by two hexadecimal digits, and a 32-bit integer can be
represented by eight hexadecimal digits.

Another advantage of hexadecimal numbers is that they are easy to convert to and from binary. Each
hexadecimal digit corresponds to four bits of binary, so converting between hexadecimal and binary
involves grouping the bits into groups of four and converting each group to a corresponding
hexadecimal digit.

Uses of Hexadecimal Numbers
Hexadecimal numbers are used in various applications in computer programming and digital
electronics. Some of the common uses of hexadecimal numbers are:

e Memory addresses: In computer memory, each byte of data is assigned a unique hexadecimal
address. Hexadecimal addresses are used to locate data in memory and access it for
processing.

e (Color codes: In digital graphics, colors are often represented in hexadecimal format using the
RGB (red, green, blue) color model. Each color channel is represented by two hexadecimal
digits, allowing for a wide range of colors to be represented.

e ASCIl codes: In computer programming, ASCIl codes are often represented in hexadecimal
format. ASCII codes assign each character a unique numerical value, which can be represented
in hexadecimal format for easy manipulation.

Conversion Methods

Converting between hexadecimal and other number systems is relatively easy, and many calculators
and software tools have built-in conversion functions. To convert a decimal number to hexadecimal,
you can use the division-remainder method. Divide the decimal number by 16 and write down the
remainder as a hexadecimal digit. Continue dividing the quotient by 16 until the quotient is 0, and then
write down the hexadecimal digits in reverse order.

To convert a binary number to hexadecimal, group the binary digits into groups of four and convert

each group to a corresponding hexadecimal digit. To convert a hexadecimal number to binary, convert
each hexadecimal digit to its binary equivalent and combine the resulting binary digits.

166

ThinkCyber | NX Malware Analysis

Converting Hex to Binary

Converting hex to binary involves the process of converting each hex digit to its corresponding 4-bit
binary representation. Hexadecimal (hex) is a base-16 number system that uses 16 symbols, 0-9 and
A-F, to represent numbers. Each hex digit represents four bits, and two hex digits represent one byte.
To convert hex to binary, follow these steps:

1. Choose the hex value that you want to convert to binary.

2. Write down the binary representation of each hex digit using the table below:

Hex Digit | Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MM QOO >IO|IO|IN|O|UAIWINIFRIO

3. Write down the binary representation of the hex value by concatenating the binary
representations of each hex digit. For example, the hex value "1F" would be converted to
binary as follows:

1 F
0001 1111

Therefore, the binary representation of "1F" is 00011111.
In summary, converting hex to binary involves writing down the binary representation of each hex digit

using the table above and concatenating the binary representations of each hex digit to obtain the
final binary representation of the hex value.

167

ThinkCyber | NX Malware Analysis

Converting Between Decimal, Binary, and Hexadecimal
Converting between decimal, binary, and hexadecimal is an important skill in computer science and
digital electronics. Here are the methods for converting between these number systems:

Decimal to Binary
To convert a decimal number to binary, we use the division and remainder method. Here are the steps:

1. Divide the decimal number by 2.

2. Write down the quotient and the remainder. The remainder will either be 0 or 1.

3. Continue dividing the quotient by 2 and writing down the quotient and remainder until the
quotient is 0.

4. The binary number is the sequence of remainders read from bottom to top.

For example, to convert the decimal number 23 to binary:

23 +2 =11, with aremainder of 1
11+ 2 =5, with aremainder of 1
5+ 2 =2, with a remainder of 1

2 +2 =1, with a remainder of 0
1+ 2 =0, with a remainder of 1

The binary number is 10111.

Binary to Decimal
To convert a binary number to decimal, we use the positional value method. Here are the steps:

1. Write down the binary number.

2. Assign each digit a positional value, starting from 270 (1) on the right and increasing by a power
of 2 for each digit to the left.

3. Multiply each digit by its positional value.

4. Add up the products to get the decimal equivalent.

For example, to convert the binary number 10111 to decimal:
1x27M =16
0x27"3=0
1x2/2=4
1x27M =2
1x270=1

The decimal equivalentis 16 +4 + 2 + 1 = 23,

168

ThinkCyber | NX Malware Analysis

Decimal to Hexadecimal
To convert a decimal number to hexadecimal, we use the division-remainder method. Here are the

steps:

1.
2.

4.

Divide the decimal number by 16.

Write down the remainder as a hexadecimal digit. If the remainder is greater than 9, use the
letters A-F to represent the values 10-15.

Continue dividing the quotient by 16 and writing down the remainders as hexadecimal digits
until the quotient is 0.

The hexadecimal number is the sequence of remainders read from bottom to top.

For example, to convert the decimal number 256 to hexadecimal:

256 + 16 = 16, with a remainder of 0
16 + 16 = 1, with a remainder of 0
1+ 16 =0, with a remainder of 1

The hexadecimal number is 100.

Hexadecimal to Decimal
To convert a hexadecimal number to decimal, we use the positional value method. Here are the steps:

1.
2.

3.
4.

Write down the hexadecimal number.

Assign each digit a positional value, starting from 1670 (1) on the right and increasing by a
power of 16 for each digit to the left.

Multiply each digit by its positional value.

Add up the products to get the decimal equivalent.

For example, to convert the hexadecimal number 1A to decimal:

1x16”r1 =16
Ax1670=10

The decimal equivalent is 16 + 10 = 26.

169

ThinkCyber | NX Malware Analysis

Real-world Use Cases of Hexadecimal Conversion
Hexadecimal conversion has various real-world use cases, especially in computer science and digital
electronics. Here are some examples of how hexadecimal conversion is used in practice:

o Web Development: In web development, hexadecimal conversion is used to specify colors for
website designs. Developers use hexadecimal color codes to represent colors in web pages,
and this helps to ensure that colors appear consistently across different devices and platforms.

e Network Addressing: In network addressing, hexadecimal conversion is used to represent IP
addresses and other network parameters. Each byte of the IP address is represented by two
hexadecimal digits, making it easier to work with and identify specific network addresses.

o Memory Addressing: In computer memory addressing, hexadecimal conversion is used to
represent memory addresses. Memory addresses are assigned unique hexadecimal values
that identify specific locations in the computer's memory.

e Character Representation: In computer programming, hexadecimal conversion is used to
represent characters in ASCIlI code. ASCII code assigns each character a unique numerical
value, which can be represented in hexadecimal format for easy manipulation.

e Digital Electronics: Hexadecimal conversion is widely used in digital electronics to represent
and manipulate data. Digital circuits and logic gates operate on binary inputs, and hexadecimal
is often used to represent the data in a more compact and easily recognizable format.

e File Formats: In file formats, hexadecimal conversion is used to represent binary data in a
human-readable format. Hexadecimal values are often used to represent binary data in file
formats such as JPEG, MP3, and PDF.

Hexadecimal conversion is an essential concept in computer science and digital electronics, with many
real-world use cases. It is used to represent colors in web development, IP addresses in networking,
memory addresses in computer systems, characters in programming, and data in digital electronics.
By understanding the applications of hexadecimal conversion, digital professionals can effectively
represent and manipulate data in various fields.

170

ThinkCyber | NX Malware Analysis

Disassembly and Decompilation

Assembly Language Fundamentals

Assembly language is a low-level programming language used to communicate with computer
hardware. It provides a more human-readable representation of machine code and serves as a bridge
between high-level programming languages and the underlying hardware.

Assembly Language Basics
Assembly languages vary depending on the computer architecture and instruction set. However, some
fundamental concepts are common across different assembly languages:

= |nstructions: Assembly language instructions correspond to machine code operations, such as
moving data, performing arithmetic, or branching to different parts of the code.

= Registers: Registers are small, fast storage locations within the CPU used to hold data for
processing.

= Memory: Memory stores the program's data and instructions. Assembly language instructions
can load data from memory into registers, manipulate it, and store it back in memory.

= Addressing modes: Addressing modes determine how operands (data) are accessed in
memory or registers. Common addressing modes include immediate, direct, and indirect.

x86 Assembly Language

Assembly Language (ASM) is a low-level programming language used for direct interaction with the
computer hardware. In this chapter, we will focus on the x86 assembly language, which is designed for
the x86 class of processors.

1. General-Purpose Registers

There are eight general-purpose registers: EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDI. While they are
called "general-purpose" because they can be used for a variety of things, they often have specific uses
in certain contexts:

a. EAX: Known as the accumulator register, it is used in a number of arithmetic operations and
as a function return value.

b. EBX: The base register often holds the address of a procedure or an array in memory.
c. ECX:The count register is typically used in loop operations as a counter.

d. EDX: The data register is used in various operations, including I/0 and multiplication and
division.

e. EBP: The base pointer points to the base of the current stack frame, making it useful for
accessing local variables and parameters on the stack.

f. ESP: The stack pointer points to the top of the stack, an essential part of function calls,
push/pop operations, and handling interrupts.

g. ESI: Source index for string operations.

h. EDI: Destination index for string operations.

171

ThinkCyber | NX Malware Analysis

Examples
Let's look at some simple assembly instructions and their usage of registers:

a. MOV EAX, 1: This instruction moves the value 1 into the EAX register. This can often be seen
before a system call, as EAX is used to specify the system call number.

b. ADD ECX, EAX: This instruction adds the value in the EAX register to the ECX register, storing
the result in ECX.

¢. PUSH EBX: This instruction pushes the value of the EBX register onto the stack. This is often
used to save a register's value for later use.

d. POP EDX: This instruction pops a value off the stack into the EDX register. This is typically used
to restore a value that was previously pushed onto the stack.

e. INCECX: This instruction increases the value in the ECX register by one. ECX is often used as a
loop counter, and this instruction is commonly seen in loops.

f. CALL [EBP+8]: This instruction calls the function whose address is stored at the memory
location EBP+8. The EBP register is used to reference local variables and function parameters
on the stack.

2. Special Purpose Registers: Specific registers in the x86 architecture are designated for certain
functions:

= ECX, often called the count register, is typically used for loop counter scenarios.

= EIP (Extended Instruction Pointer) stores the memory address of the next instruction that
will be executed.

= EBP (Base Pointer) points to the base of the current stack frame.

= ESP (Stack Pointer) points to the top of the current stack frame.

= EFLAGS stores the current flags, including the Zero Flag (ZF), which holds the results of
operations.

3. Portable Executable (PE) Sections: A PE file comprises several sections, each performing distinct
roles:

= . data section: Stores pre-configured variables.
= rsrc section: Contains the graphical elements of the binary.
= _text section: Contains the executable code.

4. Assembly Instructions: Assembly language incorporates a variety of instructions for performing
different tasks:

= MOV: Moves a value from one register to another (e.g., 'mov eax,0x04' puts 0x04 into eax,
while 'mov eax, ebx' moves the value in EBX into EAX).

= ADD: Adds two values together ('add eax, ecx' adds the value in ECX to EAX).

= SUB: Subtracts two values ('sub eax, edx' subtracts the value in EDX from EAX).

= MUL: Multiplies two values.

= DIV: Divides two values.

= CMP: Compares two values.

= INC: Increments the value in a register (e.g., 'inc eax' increments the value in EAX).

172

ThinkCyber | NX Malware Analysis

= DEC: Decrements the value in a register (e.g., 'dec eax' decrements the value in EAX).

5. Jump Instructions: Assembly language enables control flow to "jump" to different parts of the code
based on certain conditions:

= JZ: Jump if Zero (e.g., 'jz Loop' jumps to the label "Loop" if the zero flag is set).
= JNZ:Jump if Not Zero.

= JE: Jump if Equal.

= JNE: Jump if Not Equal.

= JL: Jump if Less than.

= JG: Jump if Greater than.

System Calls

System calls are the fundamental interface between user-level processes and the kernel. They allow
user-level programs to request services from the operating system kernel, such as file operations,
network communications, process management, and other low-level functionalities. When a program
needs to perform a privileged operation or access system resources, it invokes a system call, which
transfers control to the kernel.

Linux General System Calls

EAX Value | Syscall Description

1 sys_exit Terminates the process

2 sys_fork Creates a new process

3 sys_read Reads from a file descriptor

4 sys_write Writes to a file descriptor

5 sys_open Opens a file

6 sys_close Closes a file descriptor

7 sys_waitpid | Waits for a process to change state

8 sys_creat Creates a file

9 sys_link Creates a hard link

10 sys_unlink | Deletes a name and possibly the file it refers to
11 sys_execve | Executes a program

12 sys_chdir Changes the current working directory
13 sys_time Gets the current time

14 sys_mknod | Creates a special or ordinary file

15 sys_chmod | Changes permissions of a file

16 sys_lchown | Changes owner and group of a file

173

ThinkCyber | NX Malware Analysis

Here's an example of a simple x86 assembly program that prints "Hello, World!" to the console. This
program uses the Linux system calls.

section .data
hello db 'Hello, World!",0 ; null-terminated string to be printed

section .text
global _start

_start:
; write system call
mov eax, 4 ; syscall number (sys_write)

mov ebx, 1 ; file descriptor (stdout)

mov ecx, hello ; pointer to message to write
mov edx, 13 ; message length

int 0x80 ; call kernel

; exit system call

mov eax, 1 ; syscall number (sys_exit)
xor ebx, ebx ; exit code

int 0x80 ; call kernel

This program does the following:
1. Sets up a data section where we define our string "Hello, World!".

2. The _start: label is where the program execution begins. This is like the main function in C.

w

The mov instructions are used to set up the necessary arguments for the system call.
4. int 0x80 triggers a software interrupt, which transfers control to the kernel, where the system
call specified in the eax register is performed.

5. After printing the string, the program uses another system call to exit.

To compile and run this program, you can use the NASM assembler and the Id linker. Here are the
commands:

nasm -f elf32 hello.asm

Id -m elf_i386 -o hello hello.o
./hello

174

ThinkCyber | NX

Malware Analysis

Windows General System Calls (API)

System Call Description

CreateFile Creates a new file.

ReadFile Reads data from a file.

WriteFile Writes data to a file.

CreateProcess Creates a new process.
TerminateProcess Terminates a process.

GetSystemTime Gets the current system time.
GetlLocalTime Gets the current local time.
GetSystemInfo Gets information about the system.
GetVersionEx Gets information about the version of Windows.
GetProcAddress Gets the address of a function in a DLL.
LoadLibrary Loads a DLL into memory.

FreeLibrary Frees a DLL from memory.
GetModuleHandle Gets the handle of a DLL.

ExitProcess Terminates the current process.

Here's an example of a simple x86 assembly program that prints "Hello, World!" to the console. This
program uses the Windows system calls.

.386
.model flat, stdcall

include windows.inc
.data

szMessage db "Hello, World!", 0
dwWritten dd 0

.code

start:

invoke WriteConsoleA, GetStdHandle(STD_OUTPUT_HANDLE), addr szMessage, 13, addr dwWritten, NULL

invoke ExitProcess, 0

end start

This program does the following:
e .386: This directive specifies that the program is written for a 32-bit processor.

e .model flat, stdcall: This directive defines the memory model and calling convention for the
program. flat indicates that the program uses a flat memory model, where all memory
addresses are treated as a single linear address space. stdcall specifies the calling convention,
which determines how functions are called and how parameters are passed.

¢ include windows.inc: This line includes the windows.inc file, which is a header file containing
definitions and macros specific to the Windows operating system. It provides access to
Windows API functions and constants.

175

ThinkCyber | NX Malware Analysis

.data: This section is used to declare static data variables. In this case, it declares the variable
szMessage, which is a null-terminated string with the value "Hello, World!".

e szMessage db "Hello, World!", 0: This instruction defines a string constant named szMessage.
e .code: This directive marks the beginning of the code segment.

e start:: This label marks the beginning of the program's entry point.

e invoke WriteConsoleA, GetStdHandle(STD_OUTPUT_HANDLE), addr szMessage, 13, addr
dwWritten, NULL: This line invokes the WriteConsoleA function from the Windows API. The
invoke directive simplifies the syntax for calling functions.

= The first parameter, GetStdHandle(STD_OUTPUT_HANDLE), retrieves the standard output
handle, which represents the console window.

= The second parameter, addr szMessage, passes the address of the szMessage string to be
written to the console.

= The third parameter, 13, specifies the length of the string to be written.

= The fourth parameter, addr dwWritten, is the address of a variable that will receive the
number of characters actually written. It is declared elsewhere in the code.

= The last parameter, NULL, indicates that no attributes are specified for the output.

e invoke ExitProcess, 0: This instruction calls the ExitProcess function to terminate the program.

About Invoke

In assembly language, the invoke directive is a high-level macro that simplifies the process of calling
functions from external libraries or APIs. It is often used in conjunction with the stdcall calling
convention.

The invoke directive takes the following form:

invoke function_name, parameterl, parameter2, ...

Here, function_name is the name of the function to be called, and parameterl, parameter2, etc.,
represent the parameters to be passed to the function.

The invoke directive performs several tasks behind the scenes:

1. It pushes the function parameters onto the stack in reverse order.

2. It calls the function using the appropriate calling convention, such as stdcall. This involves
transferring control to the function and setting up the stack frame.

3. It cleans up the stack after the function call by adjusting the stack pointer.

The invoke directive is a convenient way to make function calls because it handles the details of stack
management and calling conventions automatically. It simplifies the code and makes it more readable.

176

ThinkCyber | NX Malware Analysis

Recognizing Common Malware Patterns in Assembly
To effectively analyze malware, it is essential to recognize common malware patterns in assembly
language.

Common Malware Patterns in Assembly
Some common malware patterns in assembly language include:

= Code obfuscation: Techniques used to make code more challenging to analyze or reverse-
engineer, such as using complex control flow structures, opaque predicates, or self-modifying
code.

= Cryptographic operations: Encryption and decryption routines, often used to hide the
malware's actual payload or communication with command-and-control servers.

= Process injection: Techniques used to inject malicious code into legitimate processes, making
it more difficult to detect the malware.

= Keylogging: Intercepting and recording keystrokes to steal sensitive information, such as
passwords or credit card numbers.

= Anti-analysis techniques: Techniques to detect and evade analysis tools or virtual
environments, such as debugger detection or virtual machine (VM) detection.

Hands-on Example
Exercise: Analyzing Code Obfuscation

1. Examine the following obfuscated x86 assembly code:

section .text
global _start

_start:
mov eax, 2 ; eax how contains 2
sub eax, 1 ; subtract 1 from eax. eax now contains 1
Xor ecx, ecx ; clear ecx
add eax, ecx ; add ecx (which is 0) to eax. eax still contains 1
int 0x80 ; syscall

2. Analyze the code and determine its purpose. It's a program that simply moves the value 1 to
the eax register (which is the syscall number for exit in Linux), and then calls the int 0x80
instruction to invoke the system call, thereby exiting the program.

3. The mov, sub, and add instructions are all essentially redundant and are there to obfuscate
the code. A non-obfuscated version of the program would just be:

section .text
global _start

_start:
mov eax, 1
int 0x80

177

ThinkCyber | NX Malware Analysis

Hands-on Example
Exercise: Identifying Cryptographic Operations

1. Examine the following x86 assembly code:

section .data
key db OxAA
string db "Hello, World!", 0
length equ $-string

section .text
global _start

_start:
; XOR encryption
mov ecx, length
lea esi, [string]

encrypt:
xor byte [esi], key
inc esi
loop encrypt

; Exit the program
mov eax, 1
int 0x80

2. Analyze the code and determine its purpose. Identify the XOR operation and its use for basic
encryption.

In this code, the encrypt loop is where the XOR encryption takes place. It loads the address of the
string into the esi register, then XORs each byte of the string with the key (0xAA). The inc instruction is
used to advance to the next byte, and the loop instruction decrements ecx and jumps back to the
encrypt label until ecx is zero. This results in every byte in the string being XORed with the key,
effectively encrypting the string.

178

ThinkCyber | NX Malware Analysis

Hands-on Exercise

Exercise: Detecting Process Injection
1. Examine the following x86 assembly code:

section .data
DLLPath db 'C:\path\to\dll.dIl', 0 ; Path to DLL file
LoadLibrary db 'LoadLibraryA', 0 ; LoadLibrary function name

section .text
global _start

_start:
; Get handle to kernel32.dll
mov eax, 0x12345678 ; Placeholder for LoadLibrary address
mov ebx, [eax]

; Get address of LoadLibrary function

lea eax, [LoadLibrary]

push eax

mov eax, 0x87654321 ; Placeholder for GetProcAddress address
call eax

; Get handle to target process

mov eax, 0x1234 ; Placeholder for OpenProcess address
push Ox1FOFFF ; PROCESS_ALL_ACCESS

push 0 ; FALSE (bInheritHandle)

push 0x5678 ; Placeholder for target process ID

call eax

; Allocate memory in target process

mov ebx, eax ; Save handle to target process

mov eax, 0x23456789 ; Placeholder for VirtualAllocEx address
push 0x1000 ; MEM_COMMIT

push 0x40 ; PAGE_EXECUTE_READWRITE

push 1000 ; Size of memory to allocate

push 0 ; NULL (IpAddress)

push ebx ; Handle to target process

call eax

; Load DLL into target process

push ecx ; Address of DLL path in target process

push ebx ; Handle to target process

mov eax, 0x45678901 ; Placeholder for CreateRemoteThread address
call eax

; Exit the program
mov eax, 1
int 0x80

2. Analyze the code and determine its purpose.

This code does the following:

1. Retrieves the address of the LoadLibraryA function.
2. Opens the target process with all possible access rights (PROCESS_ALL_ACCESS).
3. Allocates memory within the address space of the target process using VirtualAllocEx.

179

ThinkCyber | NX Malware Analysis

4. Writes the path of the DLL to be injected into the allocated memory using
WriteProcessMemory.

5. Loadsthe DLL into the target process's address space using CreateRemoteThread, which starts
a new thread that calls LoadLibraryA with the DLL path as its argument.

6. Exits the program.

180

ThinkCyber | NX Malware Analysis

IDA

Introduction to IDA

The Interactive Disassembler (IDA) is a powerful, industry-standard disassembler that is widely used
by professionals, particularly those in cybersecurity and reverse engineering. It is a tool that allows you
to examine the inner workings of software by disassembling its code to a more human-readable form.
IDA provides numerous features and capabilities, from control flow graphing to detailed annotations,
making it the de facto choice for static analysis.

IDA Basics

Before we dive into IDA, it's essential to understand the process of disassembly. In its simplest form,
disassembly is the process of transforming machine language, which is a binary format that a
computer's hardware understands, back into assembly language, a more human-readable form.
Assembly language, while challenging to understand for the uninitiated, is essentially a low-level
programming language that provides a stronger understanding of the computer's inner workings.

Q IDA: Quick start X

Disassemble 2 new file

Go Work on your own

Lozd the old disassembly

Display at startup

The Need for a Disassembler

IDA's function as a disassembler is crucial for several reasons. First, it's a key tool in reverse
engineering, a process where engineers break down a piece of software to understand its operations,
often without having access to the source code. This allows them to discover bugs, vulnerabilities, or
malicious code in the software. Furthermore, it is frequently used for patch diffing, malware analysis,
vulnerability discovery, and even the more benign exploration of legacy code when original source
code is unavailable.

IDA Features

Interactive, Programmable, Extendable

One of IDA's distinguishing features is its interactivity. While some disassemblers offer a static output,
IDA allows the user to explore the code, change annotations, and even rewrite assembly instructions.
This dynamic approach significantly improves the reverse engineering process, providing a more
detailed understanding of the program's flow and operations.

IDA is also programmable, allowing for the automation of tasks through its own scripting language,
IDC, and also supports Python. This greatly enhances the user's capabilities, making it possible to

create scripts that can analyze particular patterns in the code or automate routine tasks.

181

ThinkCyber | NX Malware Analysis

Lastly, IDA is extendable. It provides an SDK (Software Development Kit), enabling the development of
plugins that can extend its functionalities. Many plugins have been created by the user community and
are available for tasks ranging from enhanced code visualization to integration with other analysis
tools.

Multi-Platform

IDA supports an impressive range of platforms. As of the last update at the time of writing, IDA can
handle more than 60 families of processors, including x86, ARM, PowerPC, MIPS, and more. It can also
disassemble code for many operating systems, including Windows, Linux, macQOS, iOS, and Android.
This wide range of support is one of the reasons why IDA is so valuable, as it can analyze virtually any
piece of software.

Graphing

IDA provides graphical representations of disassembled code, showing control flow graphs that help
the user understand the structure of the code and the relationships between different blocks of code.
This is particularly helpful in understanding loops, conditional branches, and function calls.

Understanding the IDA Interface
IDA's interface is divided into multiple windows, each providing a unique perspective on the
disassembled code.

The Disassembly window displays the disassembled code itself.

g‘ IDA - FILEO1 C:\Users\Malware\Desktop\basicstatic\basicstatic\FILEO1 - O X
File Edit Jump Search View Debugger Options Windows Help
SH e BHmE S 3 o DO ddt FrF X > O Ok v ek o
Library function [l Regular function [l Instruction [Data [l Unexplored || Exdemal symbol
[F] Functons vindow O#& x waviewa D] HexVient (B structures [E]l Enums B2 impors #F Expors

Function name E =] @

mov eax, [esp+54h+argv]
mov esi, offset aWarningThisWil ; "WARNING THIS WI DESTR 3 MACHINE
mov eax, [eax+4]

loc_401460:
mov dl, [eax]
Q 5 mov bl, [esi]
mov cl, dl
Ak, Graph overview 0&8 x cmp dl] bl
jnz short loc_4081438
¥ |1
M _£F@a L
156.25% (-24,563) (115.4) Q0001440 00401440: _main (Synchronized with Hex View-1)
[E] output vindow o & x

The initial autoanalysis has been finished.

Python |
Al idle Down Disk: 32GB

182

ThinkCyber | NX Malware Analysis

The Graph window presents the control flow graph for the current function.

“ IDA - FILEOT C:\Users\Malware\Desktop\\basicstatic\basicstatic\FILEO1 - (] X
File Edit Jump Search View Debugger Options Windows Help
BHEH e B B) e D@ of ket F X b D O debuger MEIE = o

[| B =

J Library function [l Reguler function [l
[7] Functions window o e = B impors [[F Ewes [

Function name

_excapt_handlerd 160:
_controlfp dl,

[eax]
bl, [esi]
cl, dl
dl, bl
[inz short loc_401488

< i = e — 1

156.25% (-24,583) (515,61) 00001440 D0401440: _main (Synchronized viith Hex View-1)

Output window o8& x
The initial autcanalysis has been finished.

ython ||

AU idle Dovm Disk: 5268

The Functions window shows a list of all functions detected in the code, and the Imports and Exports
windows display the imported and exported functions, respectively.

“ IDA - FILEOT C:\Users\Malware\Desktop\basicstatic\basicstatic\FILEO1
File Edit Jump Seach View Debugger Options Windows Help
AR e E) e D0 B0 OCOASHE ddd s

Library function [ll Regular functon [ll Instruction Data Unexplored External symbol
[F] Functons windovr O& x 1DA View-A. B Hexview1 [Structures [

=ub_101040 mov eax, [esp+54h+argv]

=ub 40107 mov esi, offset aWarningTh
sub_4010A0

=ub_0L1ED mov eax, [eax+4]

_main

start
_XcptFiter

_inftterm
__setdefauktprecison E

sub_4014E
nulsub_1

_except_handlerd 1
_controlfp

The Hex View window allows you to see the raw hex bytes of the code.

Q IDA - FILEOT Ch\Users\Malware\Desktop\basicstatic\basicstatic\FILEO1 — O X

File Edit Jump Search View Debugger Options Windows Help

B H e B) o AQEE: OFAS M| Acheh FrdFe X P Modsbugger ~| %e| [P] »
Library function [l Regular function [l Instruction Data Unexplored External symbal

unctions window 08 x [Hosvews] O devier: @ (6 strocwes [[F ewms [0 mports [(B Bpos [

Function name ~|[p24217E0 D6 8B 54 24 50 52 FF D& GA 0 63 4C 30 40 00 68 ~
PRaB17F@ 7C 3@ 48 @O FF 15 24 20 4@ 8@ 85 (B 6A 00 75 @6
£ sub_soiom Pe4p186@ FF 15 38 20 48 60 63 44 3@ 48 88 E3 DB FI FF FF
L sub_s01040 pp4p181@ 83 C4 @8 5F SE 5D 33 CO 5B 83 C4 44 C3 99 90 9@
I | sub_401070 le@401820 8B EC 6A FF 68 70 20 48 @8 68 60 19 40 @8 64
£ | sub 401040 [pe421838 Al @@ @8 BB BA 58 64 83 25 @A B8 BB @8 83 EC 28
I sub_so11E0 v ||pe401842 53 56 57 89 65 ES B3 65 FC @@ GA @1 FF 15 58 20
&] Pp4p185@ 4@ @@ 59 83 BD F@ 30 4@ @@ FF 83 6D F4 30 40 @@
i v Pe4p186@ FF FF 15 54 28 48 00 85 @D EC 38 48 8@ 39 @8 FF
Line 7 of 14 pP42187@ 15 50 20 40 08 BB OD ES 3@ 40 @0 89 @8 Al 4C 20
Pp4p1882 40 @@ 8B @O A3 F8 30 40 @@ E3 (3 B8 89 00 83 3D
ah, Graph overview O 8 X |bpap1s9a Ds 3@ 4@ 89 BB 75 6C 65 4E 19 4@ BB FF 15 45 28
] pP4018A2 40 @@ 50 ES 94 00 00 00 65 @C 30 48 99 68 08 3@
Pp4p188@ 40 @@ E8 7F B8 8@ @0 Al E4 30 48 B8 89 45 D8 8D
PB4B18CE 45 D8 58 FF 35 E@ 30 4@ @@ 8D 45 EB 50 8D 45 D4
pP4018D@ 5@ BD 45 E4 50 FF 15 40 20 40 00 68 04 30 40 @@ P.E&PY.@-@.h.0.
PP4p18E@ 68 @@ 38 49 B9 E8 4C 0@ ©@ 88 FF 15 3C 20 40 @@ h.8f.2L...7.<-@.
00001620 start (Synchronized with TDA View-A) v
Output vindow o8 x
The initial autoanalysis has been finished.
pytn |
AU: idle Down Disk: 32GB

183

ThinkCyber | NX Malware Analysis

The Structures window is where you can define and view data structures, and the Enums window is
for defining and viewing enumerations.

g IDA - FILEQT C\Users\Malware\Desktop\basicstatic\basicstatic\FILEO1 -] x
File FEdit Jump Search View Debugger Options Windows Help
EHH e GG S) oA IF: OFAS Ml F el X b OO [hodbueger - %R A

J Library function [l Reguler function [l Instruction Data Unexplored External symbol
Functions window O & x [Emaviews][O Hecview [strucures B [E] Enums

tmports [0 ([F] Exports [

Function name A |[peeeseee ; U : delete structure member ~

paoooeee ; [@o@eeseC BYTES. COLLAPSED STRUCT _SCOPETABLE_ENTRY. PRESS CTRL-NUMPAD+ TO EXPAND]

¥ |jpeeeseee ; [eeeees18 BYTES. COLLAPSED STRUCT CPPEH_RECORD. PRESS CTRL-NUMPAD+ TO EXPAND]
> lpeeeaops ; [eeo@e@ele BYTES. COLLAPSED STRUCT _EH3 EXCEPTION_REGISTRATION. PRESS CTRL-NUMPAD+ TO EXPAND]

Lrelofla [recweeso ; [@0BBE148 BYTES. COLLAPSED STRUCT _WIN32_FIND_DATAA. PRESS CTRL-NUMPAD+ TO EXPAND]
ine fof lpe@eaopa ; [000080e8 BYTES. COLLAPSED STRUCT FILETIME. PRESS CTRL-NUMPAD+ TO EXPAND]
b, Graph overview 0 & x

2. CPPEH_RECORD:00000000 v
Output vindaw O& x
The initial autoanalysis has been finished.
=
AU: idie Dowin Disk: 5265

Finally, the Output window is where IDA displays various informational and error messages.

Output window o8& x
Python Z.7.18 (vZ.7.18:8dZ1aaZltZ, Apr 28 J0J0, 13:25:05) [F5C v.1500 b4 DIt (AMDOL)] N
IDAPython v1.7.8 final (serial @) (c) The IDAPython Team <idapython@googlegroups.com>

Type library 'vcéwin' loaded. Applying types...

Types applied to @ names.

Using FLIRT signature: Microsoft VisualC 2-14/net runtime
Propagating type information...

Function argument information has been propagated

The initial autoanalysis has been finished. hd
Python |
AU: idle Down Disk: 32GB

184

ThinkCyber | NX Malware Analysis

Malware Analysis using IDA

Before diving into analysis, it's important to prepare a secure environment. Analyzing malware carries
inherent risks as we're dealing with potentially harmful code. To mitigate these risks, perform analysis
in an isolated virtual environment, like a Virtual Machine (VM), disconnected from networks and
sensitive data.

Ensure that you have obtained a malware sample for this exercise. Sites like VirusShare, or TheZoo on
GitHub, offer malware samples for educational purposes.

im] GitHub - yfisf/theZoo: A repositc X

< @] [8] github.com

¥ master ~ P 3 branches 2 tags Go to file m About

A repository of LIVE malwares for your

dOnOx Merge pull request #197 from Danik2343/master .. 398d839 3 weeksago YY) 222 commits own joy and pleasure. theZoo is a project
created to make the possibility of

conf Added NOBELIUM last month malware analysis open and available to
the public.

imports Fix for Python 3 9 months ago P

malware Added NOBELIUM last menth & thezoomorirt.com

[.gitattributes MalwareDB 0.42 10 years ago T e S -]
Basic Analysis

Let's start with a simple analysis of our sample malware, a file named sample.exe. Open it in IDA. Your
primary point of interest will be the "Disassembly" window, where you'll see the assembly code.

Exercise: Understanding the Entry Point
One of the first things to identify in malware analysis is the entry point, the first code executed when
the program starts.

1. Inthe "Functions Window," look for a function named start or something similar. This function
typically calls the main function where the principal routine of the code begins.

“ IDA - FILEOT C\Users\Malware\Desktop\basicstatic\basicstatic\FILEO1 —] X
File Edit Jump Search View Debugger Options Windows Help

FRie-r-®HEHE S) @O A OGS af Ml Fiohet F e X[b O O [rodbugeer | el &
Il

A I -
Library function [l Reguler function [l Instruction Data Unexplored External symbol
[F] Functons vindow 08 x 1DA View-A 3] Hex view-1 [E] structurss [E enums FE 1mpors [Expors
FTe—FT—
Function name ~ public start mov ecx, [eax]
7] sub_401080 Start proc near mov ecx, [ecx]
7] sub_soriE0 mov [ebp+Code], e
Code= dword ptr -3eh push eax
argu= dword ptr -2Ch push ecx
var_28= dword ptr -28h call XcptFilter
var_24= dword ptr -24h pop ecx
envp= dword ptr -28h pop ecx
LineTof 14 arge= dword ptr -1Ch retn
ms_exc= CPPEH_RECORD ptr -18h
b, Graph overview Oe& x
p] ; _unwind { // _except_handler3
: push ebp
mov ebp, esp

push @FFFFFFFFh

push offset stru_48287@
nich nffrat avean + handlar:
100.00%. (-163,77) (5,208) DOD01820 0D4D1820: start (Synchronized viith Hex View-1)

[E] output vindawe 08 x
The initial autoanalysis has been finished.

Python |

AU: idie Dawin Disk: 2GB

2. Analyze the instructions in the start function and find the main function call.

185

ThinkCyber | NX Malware Analysis

3. Investigate the main function. You'll see the assembly code that the malware executes at

‘,‘ IDA - FILEOT C:\Users\Malware\Desktop\basicstatic\basicstatic\FILEO1 - [m] x
File Edit Jump Search View Debugger Options Windows Help
HR e iy G) o DO FEs OEASH W Ml P F e X > O O bt Mkl

Library function [ll Regulsr function [l Instruction Dats || Unexpiored External symbel
[F] Functions vindovr o8 x wavewa [[B] Hecview: [A] structures [E enums Imports o
Function name ~ mov eax, [esprargc]

sub esp, 44h

S| sub_ 401080 cmp eax, 2
F sub_4011E0 push ebx

_main push ebp
£ start push esi
F| xcptrker push edi
7| interma jnz loc_461513
F| _sstdefaultpracision v
< > _
Line 6 of 14 ol =

mov eax, [esp+Sdhtargy]
£ Graph overview o8 x mov esi, offset aWarningThisWil ; "WARNING THIS WILL DESTROY YOUR MACHINE"
mov eax, [eax+i]
100.00% (-102.428) (484,2) 00001440 00401440: _main (Synchronized wiith Hex Viewr-1)

Output window 0O& x
The initial autoanalysis has been finished
Python ‘
AU: dle Dowen Disk: 3268

Dynamic Libraries and API Calls

Many malware samples utilize dynamic libraries (DLLs) to carry out their operations. These libraries
provide an interface for accessing system functionalities. Monitoring these calls can provide clues
about the malware's behavior.

Exercise: Analyzing API Calls
1. Open the "Imports" window. Here, you'll see a list of DLLs and the API functions the malware

uses.

2. Identify commonly used malicious APIs, like WriteFile, CreateProcess, CreateRemoteThread,
RegSetValue, etc.

“ IDA - FILEO3 C\Users\Malware\Desktop\basicstatic\basicstatic\FILEQ3 - O x

File Edit Jump Search View Debugger Options Windows Help
BEHiera- BH8 6) o DO FE: OFASd M

Library function [ll Regular function [l Instrucbon Data

Fabot v ed X b DORE—] @@
Unexplored [External symbol

mpors B [F expors

Output vindaw

|Z| Functions vindow o & x IDA View-A |§| Hex View-1 \E Structures L‘j Enums
Function name || Address Ordinal Name Library ~
sub,_401000 5] 00402000 OpenProcessToken ADVAPII2
sub_4010FC =) 00402004 LockupPrivilegeValueA ADVAPI3Z
sub_401174 (%) 00402008 AdjustTokenPrivileges ADVAPI32
| | sub_s011FC ™ || B3 oss0z010 GetProcAddress KERNEL32
< > %) 00402014 LoadLibraryA KERNEL3Z
¥=| 00402018 WinExec KERNEL32
E) 0040201C WriteFile KERNEL32
AR, Graph overview O & x || &3 o020 CrasteFieA KERNEL32
feei 00402024 SizecfRescurce KERNEL32
CresteRemoteThread KERNEL32
- E) 0040202C FindResourceA KERNEL32
E) 00402030 GetModuleHandieA KERNEL32
E) 00402034 GetWindowsDirectoryA KERNEL32 v
Line 10 of 34
08 x

The initial autoanalysis has been finished.

Pyt

AU idle Down Disk: 92GB

3. Click on each API function and see where it's called in the code. Analyze the surrounding code

to understand its usage.

186

ThinkCyber | NX Malware Analysis

Strings and Hidden Information
Strings within the malware can provide valuable clues. They can reveal file paths, URLs, registry keys,
and more.

Exercise: Extracting Strings
1. InIDA, click on the "View" menu and select "Open subviews" -> "Strings".

ﬂ IDA - FILEO3 C\Users\Malware\Desktop\basicstatic\basicstatic\FILEO3 - O X
File Edit Jump Search View Debugger Options Windows Help
BE e Open subviews Y T Quickview Ctrle1 Ne debugger ~| % i D
I Graphs ,] -
I Disassembly
tirary fncion I Regulert - To0l02rs ’ % Proximity browser
A Calculator... ? = =
T o " . Generate pseudocode s pes [(B Epes [
ull screen ~
Functien name B Hexdump : sub_4811FCHE7Tp
7] sub_401000 #h Graph Overview \ —ub 4@L1FCIETTR
; su:_itti:: & Recent scripts Al+F9 [Exports ss, LPSECURITY_ATTRIBUTES lpThreadAttribu
sub_
7] sub_aorirc i@ Database snapshot manager.. Ctrl+Shift+T Imports : sub_461174+791p
£ _main Names Shift+F4 : sub 4811744791
F| _sllocs_probe Print segment registers Ctrl+Space ot s)cSTR IpName, LECSTR 1pType)
e R unctions ift
- i Printinternal flags F rm_smgs wirn | sub_esrircractp
F| _initterm " : sub_4@11FC4+BCTr
Hide Ctrl+ Numpad-+-
£ _setcefeuitpreciion s Segments Shift+F7 [SName)
| sub_s016FE 4k Unhide Ctrl+Numpad++
1 nulsub_t N Segment registers Shift+F8 : sub_4811FC+ASTp
ide a
< Selectors ©
a8 Unhideall >
2] outpt vindow X Delete hidden range [# Signatures Shift+F3 o0& x
Type libraries Shift+F11
[The anitial autoanatys: IEERERE I
(i Structures Shift+F
AU: idle Davin Disk: 52GB [E] Enumerations Shift+F10
[E Localtypes Shift+F1
Cross references
A Function calls
[E) Notepad
[&] Problems
[7] Patched bytes Crl+ Alt+P

2. Browse through the list of strings and look for any suspicious or revealing information.

“ IDA - FILEO3 C\Users\Malware\Desktop\basicstatic\basicstatic\FILEO3 — O X
File Edit Jump Search View Debugger Options Windows Help
BHierdy B8 6) w D@ FE: OFhcd Ml et No debugger -] sl & »

Library function [l Regular function [l Instruction Data Unexplored External symbol

Firre 068 x| [Emavenal] [stingswindow B [0 Hexview-1] [Al stuctures [[E] enums B Imports [(2] Exports [

Function name || Address Length Type String ~
sub_401000 c \isystem3Z\\wupdmgr.exe

sub_4010FC c Uastios

(7] sub_sorrza c 2101

sub_4D11FC c EnumProcsssModules

_main c psapidll

__alloc_probe. c GetModuleBasshameas
stert c pspidl
_XcptFiter c EnumProcesses

_initterm [psapi.dil

__setdefaultprecision c

sub_4016FE c

F1 nullsub 1 & < Vivrinup.exe

< > c hd

Line150f 18

Output vindaw o8 x

The initial autoanalysis has been finished.

|

AU: idle Down Disk: 92GB

187

ThinkCyber | NX Malware Analysis

3. Double-click on any interesting string to see where it's used in the code.

!}! IDA - FILEO3 C\Users\Malware\Desktop\basicstatic\basicstatic\FILEO3 — O x
File Edit Jump Seacch View Debugger Options Windows Help

fH e HEGh S ¥ e DA OFACH M FdEFF e X O O | %

Library function [ll Regular function [l Instruction Data [l Unexplored External symbol

[F] Functions vindaw O & x IDA Viev-A Sirings window B Hex view-1 [A] structures [enums) tmports 2] Expors

Function name -~ B aﬁgn 4 =

; CHAR aPsap 1]

L sub 201000 aPsapiDll 1 b ‘psapi.dll’,e ; DATA XREF: _main+d7%o

f| sub_4010FC X align 4

£ | sub_d01174 . data:@@483804 aSystem32Wupdmg 8 db '\system32\wupdmgr.exe',®

f| sub_ap11FC . DATA XREF: +

£ | _main align 4

¥ _aboca_probe]

7 start db "%s¥s’,0 ; DATA XREF: _main+lD4to

f| eptFilter w align 4

I £ indterm
£ > 0D003DD4 004030D4: .datazaSystem32Wupdmg_D (Synchronized with Hes View-1) v

< >

[Z] output window O& x
The initial autecanalysis has been finished.

Pythan ‘
AUz idle Dowin Disk: 52GB

Advanced Malware Techniques

Advanced malware often uses techniques to obfuscate its code, like packing or encrypting. A packer
can be identified by a small number of imports and a large amount of code in the start or main function

that subsequently unpacks the actual malware.
When I've opened the packed file, | get this Warning message:

@

S E ey &) e ECIE RS

ol =X

‘.‘ Warning X

The imports segment seems to be destroyed. This MAY mean that
! the file was packed or otherwise modified in order to make it

more difficult to analyze. If you want to see the imports

segment in the original form, please reload it with the

'make imports section’ checkbox cleared.

D Don't displey this message again

[E] output window

wﬁ’lﬁnﬁ ﬁ#-s*'is}@}([

| 3. Creating a new segment (B8486

|

2:00406050 Dowin

The "Truncated section at file offset" warning in IDA Pro refers to an inconsistency between the size or
the location of a section of the Portable Executable (PE) file as it's defined in the file's headers, and the
actual size or location when IDA attempts to load it. When a PE file is created, the headers include
information about the size and location (offset) of each section within the file. When IDA loads the file,

it uses this information to map each section into its workspace.

This discrepancy can occur due to various reasons:

1. Corruption or Damage: The PE file could be corrupted or damaged in some way that has

affected the section in question.

2. Packing or Obfuscation: The file might be packed or obfuscated in a way that purposely creates

these inconsistencies to hinder analysis.

3. Malformation: The PE file could be malformed, either unintentionally (due to a bug in the

software that created it) or deliberately (to evade detection or analysis).

188

ThinkCyber | NX Malware Analysis

Exercise: Identifying Packers

1. Inspect the "Imports" window. If you see a limited number of imports, it might be a sign of a

packer.

‘,‘ IDA - FILEO2 C:\Users\Malware\Desktop\basicstatic\basicstatic\FILEO2 -

File Edit Jump Search View Debugger Options Windows Help

Library function [ll Reguler function [l Instruction Datz Unexplored External symbol

EEHie- - HHEG S VA EEE PE RS] of a6 e X > O O [edduge v |] »

O X

[F] Functions windew O & X | [5) 10Aview-a (3] Hex viewe-1 [A] structures El Enums mpors [[P Exports

Function name Address Ordinal Mame Library

[F] st 505 KERNEL32
=] 00406058 GetProcAddress KERNEL32
=] 0040605C VirtualProtect KERNEL32
0E] 00406070 Virtuzlalloc KERNEL32
FE] 00406074 VirtuzlFree KERNEL32
Z] 00406078 ExitProcess KERNEL32
=] 00406080 CrasteServicad ADVAPI32
0E| 00406088 exit MSVCRT

< 5 || g omoson0 InternetOpenA WININET
Line 1of9

Output windove

O& x

The initial autoanalysis has been finished.

Python

AU: idle Down Disk: 51GB

2. Look for calls to APIs such as VirtualAlloc or VirtualProtect in the start or main function. These

could be used for unpacking code into memory.

‘,‘ IDA - FILED2 C\Users\Malware\Desktop\basicstatic\basicstatic\FILEO2 -] X
File Edit Jump Search View Debugger Options Windows Help
BHie-2- HHE S ¥ 0w B0 EE: OFKS K M| dad @ FFw X P OO et MIRGIE JHIE K
Library function [ll Regular function [l Instruction Data Unexplored External symbol
|Z| Functions window o8 x IDA View-A B Hex view1 [A] structures El Enums Imports [@ Exports
Function name Address Ordinal Mame Library
start (%) 00405064 LoadLibraryA KERNEL32
Z) 0D4006E GetProcAddress KERNEL32
[¥E] 0040606C VirtuslProtect KERNEL3Z
%E| 00406074 VirtualFres KERNEL3Z
(=) 00406078 ExitProcess KERNEL32
%] 00406050 CresteService ADVAPI32
(%2) 00406088 et MSVCRT
%E] 00406050 InternatOpenA WININET
< >
Line1of 1 Linedof @
Qutput vindow Oe® x
The initial auteanalysis has been finished.
pythen |
AU: idk Davm Disk: 5268

3. If you identify a packer, the next step could involve dynamic analysis
understand the unpacked code.

About VirtualAlloc and VirtualProtect

with a debugger to

VirtualAlloc and VirtualProtect are two functions provided by the Windows API, often used in memory
management. These functions can be crucial for malware analysis as they can reveal how a malicious
program allocates and protects memory, potentially indicating its behavior. Let's take a closer look at

each.

VirtualAlloc

The VirtualAlloc function is used to reserve, commit, or both, a region of pages within the virtual
address space of a process. An application can use this function to allocate memory for its own use.

189

ThinkCyber | NX Malware Analysis

LPVOID VirtualAlloc(
LPVOID IpAddress,
SIZE_T dwSize,

DWORD flAllocationType,
DWORD flProtect

);

= IpAddress: The starting address of the region to allocate.

= dwsSize: The size of the region, in bytes.

= flAllocationType: The type of allocation.

= flProtect: The memory protection for the region of pages to be allocated.

Malware may use VirtualAlloc to allocate space for unpacking obfuscated code or storing data it
doesn't want to be written to disk. By monitoring calls to VirtualAlloc, malware analysts can identify
such behavior.

VirtualProtect
The VirtualProtect function changes the protection on a region of committed pages within the virtual
address space of a process.

BOOL VirtualProtect(
LPVOID IpAddress,
SIZE_T dwSize,

DWORD fINewProtect,
PDWORD IpflOldProtect

);

= IpAddress: A pointer to the base address of the region of pages whose access protection
attributes are to be changed.

= dwsSize: The size of the region whose access protection attributes are to be changed, in bytes.

= fINewProtect: The new access protection.

= |pflOldProtect: A pointer to a variable that receives the previous access protection of the first
page in the specified region of pages.

Malware often uses VirtualProtect to change memory permissions, for instance, marking a region of
memory as executable just before it transfers execution to that region (a common characteristic of
unpacking routines or shellcode execution). By observing calls to VirtualProtect, malware analysts can
identify such behavior and potentially determine the regions of memory that contain unpacked
malicious code or the start of a shellcode routine.

Both functions are powerful tools for controlling memory within a process, but they can also be

leveraged by malware for malicious purposes. Understanding how they work can help analysts better
understand and counter threats.

190

ThinkCyber | NX Malware Analysis

Setting up the IDA

Setting Up Preferences
IDA offers a wide range of preferences that you can configure based on your needs.

@ Load a new file X

Load file C:\Users\Mahvare! Desktop\mahwarelFiled3.exe as

Portable executable for 80386 (PE) [pe.dil]
MS-D0OS executable (EXE) [dos.dll]

Binary file
Processor type
MetaPC (disassemble zll cpoodes) [metapc] - Set
Anahysis
Loading segment | D:00000000 Kernel options 1| |Kernel options 2
Enabled
Losding offsst | 0:00000000 Indicator enabled Procsssor options

Oplicns
Loading options D Load resources

Rename DLL entries

l:‘ Manuzl load

l:‘ Create FLAT group Create imports segment

When you start IDA and open a file, you will see several options:

1. Create Flat Group: This option is used when you want IDA to treat the file as a flat binary file
with no specific format. It's useful when you're working with raw binary files or firmware
dumps that don't have any specific format.

2. Load Resources: When this option is enabled, IDA will load resources from the executable.
This includes icons, menus, dialog boxes, string tables, etc. For most analysis, especially for
Windows executables, it's advisable to leave this option enabled.

3. Manual Load: This option should be used when you want to manually control how the file is
loaded into IDA. This might be necessary if the file is packed or encrypted in some way that
prevents it from being loaded normally.

4. Rename DLL Entries: This option, when enabled, allows IDA to rename import entries with
their corresponding names from the imported DLLs. This is especially helpful when you are
dealing with a program that uses a lot of imported functions, as it can make the disassembled
code much easier to understand.

5. Create Imports Segment: This option instructs IDA to create a separate segment for the

imported functions. This can be very useful for understanding what external functions the
program uses, and how it uses them.

191

ThinkCyber | NX Malware Analysis

| & = | C\Users\Malware\Downloads\flagu - [m] *
Home Share View e
&« v P <« Local Disk (C:) » Users » Malware » Downloads » flagu w 0 Search flagu yel
£ Mame Type Size
v g Quick access
| flagl File SKB
m Desktop -
flagl.id0 1D0 File 16 KB
» Downloods | flagU.id1 ID1 File 0KE
5 Documents | flagU.id2 D2 File 1KB
= Pictures | flagl.nam MAM File OKE
« ® This PC flagl.til TIL File 1KB
» 3D Objects
m Desktop v
G items =

IDA generates several auxiliary files when you load an executable for analysis. These files are used to
store various information about the disassembled program and your analysis progress.

1. .idb or.i64 files: These are the primary database files for IDA. They store all of the information
about the disassembled binary, including the original binary data, the disassembled code, any
comments or labels you've added, etc. The .idb extension is used for 32-bit binaries and .i64
for 64-bit binaries.

2. .nam files: These files are used to store information about named addresses in the
disassembled binary. Essentially, it's a map between names and addresses, which allows IDA
to quickly look up addresses by name.

3. .til files: These files store type library information. This includes definitions for data types and
function prototypes. IDA uses this information to better understand the disassembled code
and provide more accurate analysis.

Exercise: Setting Up Preferences
1. Open IDA and navigate to 'Options' -> 'General'.

2. Enable line prefixes: This can be helpful for quickly identifying the memory address of a
particular line of code.

L IR 5 @ 3
= =] . O | No debugger ¥ | % =] »
® DA Options x e
Ubrary function Bl Reguisr funcion [l Tnstruq ~ DSSembly Anslyss | Crossrefersnces Swings Browssr Graph | M
[F] Functions windew O &8 x Address representstion Display disassembly fine parts] Expors
Function name ~ [Function offeete Line prefices (graph)
start Include segment addresses Sck ponter
Use segment names Comments
] Repastable comments
Display disassembly lines cammen
Auto comments
Empty linss
Number of opcode bytes (graph o
[Barders betvisen dstsjcods (graph) umber of opcods bytes (graph) l—l
< > [oo bock boundres () Snsiruction ndentaton (graph)]
/] Source line numbers
Line 1 of 1 Commetsinceration (aragh)
.] Try block ines ds
Graph O &8 x ands
i Sroph ovarven Richt margin (eraph) g
Line prefix xample: segDD0:0FE4
Spaces for tabulaticn 4
Low suspiciousness imt
B 100.00%
=] output window Jr— Help O& x
Caching FUACTIONS WINdow ... OK ~
Caching 'Functions window'... ok v
ton | |
AU: idle Dowin Disk: 9268

192

ThinkCyber | NX

Installing Plugins

Malware Analysis

IDA's functionality can be extended through the use of plugins.

Exercise: Installing a Plugin
1.
help in copying hex code.

Download a plugin of your choice. For this exercise, we'll use the 'hexcopy-ida' plugin that can

@ |) GitHub - OALsbs/hexcopy-ida: X = + v = u] ®
<~ (@] O 8 & nttps:y/github.com/OALabs/hexcopy-ida B 7 ¥ g =
% UALaDS / hexcopy-laa Fuoic 7 sponsor 3 LU 3 ruk @ WSt o - =
<> Code O Issues i1 pull requests 1 @ Actions ﬁa Projects @ Security I~ Insights
¥ main - ¥ 1branch 2 tags Go to file About
IDA plugin for quickly copying
e herrcore added patreon badge gb@b2a3 on Oct 12,2021 D13 commits disassembly as encoded hex bytes
B .github updated funding to Patreon 2 years ago [0 Readme
vr 51stars
[.gitignore added hexcopy script 2 years ago
& 4 watching
[READMEmd added patreon badge 2 years ago % 8 forks o
. . . 1 . 'Y .
2. Copy the downloaded FindCrypt.py file into the 'plugins' directory in the IDA folder.
[= | C:\Program Files\IDA 7.0\plugins - m] X
Home Share View 0
« v 4 » ThisPC » Local Disk (C:) » ProgramFiles » IDA7.0 > plugins v @ | Search plugins P
= Pictures # " Name Date modified Type Size ”
= This PC 7 dbgbd.dil Application extension
i || defsh HFile
» 3D Objects] dwarf.dll Application extension
m Desktop] dwarf6d.dll Application extension
[Documents | eh_parsedIl Application extension
» Downloads] eh_parsefd.dil Application extension
b Music | epoc_userdll Application extension
= Pictures 1| epoc_userfd.dll Application extension
B Videos - gdb_user.dll Application extension
» 5 [gdb_userfd.dil : Application extension
& Local Disk (C) 1| hexarm.dll 2017 10:18 AM Application extension
. DVD Drive (D:) W 1| hexarm64.dll 2017 10:18 AM Application extension
& Network v # hexcopy.py 10/12/2021 1:47 AM Python File v
76items 1item selected 9.81 KB =]

3. Restart IDA, and now should see 'Copy Hex' once you right-click the code.

[y Ccopy Cirl+C
. Abort selection AltL
‘,‘ IDA - FILEOT.exe C:\Users\Malware\Desktop\basicstatic\ba Analyze seected area b [m] x
File Edit Jump Search View Debugger Options Windows He
EE e tme s) DeamE List cross references to... S N e <)@ @ e
Jil_ Il [Enter comment I -
tbrary functian B Reguiar functon I Instruction [Deta [Unexpered (] ¢ O Enter repeatable comment... i
[F] Functions windowr o8 x mAvier-a B[O @) Structure offset U Enums) mpors D B ewes @
Function name [text-ppanissy Undefine Y - ~
Synchronize with O
B Add breskpoint F2
Copy address to command line
Copy size to command line
M Xrefs graph to...
SN Xeefs araph from,
[Copy Hex Ctrl«H
_excapt handlers ot
_controlfp
< > push eax
Line7 of 14 000018D1 O04D1BD1: start+81 (Synchronized with Hexc View-1)
[E] output vindaw 0a& x
Bytes copied: e87f000000aled 45d88d45d850FF 98d450508d45d4508d45e4
Pythan
AU: idle Down Disk: 51GB

193

ThinkCyber | NX Malware Analysis

Configuring IDA for Python Scripting
IDA includes a built-in Python interpreter, allowing you to automate tasks or extend IDA's functionality
using Python scripts.

Exercise: Setting Up Python in IDA
1. Verify that Python 2.7 is installed on your system. If not, download and install it from the
official Python website.

< > | mov eax, [eax+4]
b, Graph overview o8 x
mov dl, [eax]
mov bl, [esi]
mov cl, dl
100.00% (-315,442) (1,257) 00001440 DD401440: _main (Synchronized with Hex View-1)
[=] output vindow 0O & x
Python>import sys ~
Python>sys.version
2.7.18 (v2.7.18:8d21aa21f2, Apr 20 2828, 13:25:85) [MSC v.1588 64 bit (AMDE4)] v
]|
AU: idle Dowin Disk: 91GB

2. Restart IDA. Now you can write and run Python scripts within the IDA environment.

194

ThinkCyber | NX Malware Analysis

Features of IDA

Loading a Binary
The first step to using IDA is loading the binary file you wish to analyze.

Exercise: Loading a Binary
1. Open IDA.
2. Click on 'File' -> 'Open'. Navigate to the binary file you wish to analyze and open it.
3. You will be presented with a 'Load a new file' dialog box. Ensure the 'Manual load' box is
unchecked and click 'OK".

® Load a new file X

Load file C:\Usars\Makv \ s it 3 e\ FILEOL exe 25
Portable executable for 80326 (PE) [pe.dl]

MS-DOS executable (EXE) [dos.dll]

Binary file

Processor type

MatRC (dissssemble sl opcodes) [metanc] - Set
Analysis
Kernsl cptions 1 Kemsl optians 2
Enbled
Indicstor enabled Processor options
[Load resources
Rensme DLL entriss
[Manualto=d
[creste FLAT group Crests imports segment

r ant

Gancel Hep

4. IDA will now disassemble the file. This process may take some time depending on the size and
complexity of the file.

Navigating the IDA Interface
IDA's interface consists of multiple windows, each providing unique insights into the disassembled

code.

Exercise: Navigating the IDA Interface
1. Familiarize yourself with the various windows, like 'Disassembly', 'Functions', 'Imports’,
'Exports’, 'Strings', etc.
2. Click on any function in the 'Functions' window to navigate to it in the 'Disassembly' window.

“ IDA - FILEQT.exe C\Users\Malware\Desktop\basicstatic\basicstatic\FILEQ1.exe —] X

File Edit Jump Search View Debugger Options Windows Help

EhHiears~ S ¥y B TR OHdeicl Ml ofiaheh Fdfw X' > 0 0O[rodbugeer %P F >

Library function [ll Reguisr function [l Tnstruction Dats Unaxplored External symbal
\z Functions window O &8 x DA View-# [EJ @ Hesz View-1 IE Structures L‘j Enums ﬁ Imports @ Exports
Function name - ~ Jtext:08401448 argc = dword ptr 4 ~
. - Jtext 00401448 argv = dword ptr 8
£ | sub_4010AD Jtext:00481440 envp = dword ptr @ch
| sub_ap1070 . text: 884081448
| sub_401040 . text:@e4a1440 mov eax, [esptargc]
¥ | sub_401000 . text:00401444 sub esp, 44h
F| start Ltext:00401447 cmp eax, 2
7] nulsub_t Jtext:@ed4a144n push ebx
= v Jtext:@e401448 push ebp
< > 00001440 0040144D: _main (Synchronized with Hex Vievr-1) v
Line 9 of 14 < >
[E output viindawe Oa x
Caching "Functions window'... ok
oy |
AU idke Dovn Disk: 91G8

3. Similarly, click on any import in the 'Imports' window to navigate to its references in the code.

195

ThinkCyber | NX Malware Analysis

Analyzing Code Flow
IDA provides control flow graphs for visualizing the flow of code.

Exercise: Using Code Flow Graphs
1. Open any function in the 'Disassembly' window.
2. Right-click and select 'Graph mode' or press 'Space' to view the control flow graph of the

function.
‘,‘ IDA - FILEO1.exe ChUsers\Malware\Desktop\basicstatic\basicstatic\FILEO1.exe — O X
File Edit Jump Search View Debugger Options Windows Help
BH v B3 /@O DB OFACHE dd @ F-F i X > 00w~ %@ @
‘A Il I S
Library function [ll Regular function [l Instruction Data Unexplored External symbol
[F] Functions viindous 08 x| Eoavews B [0 Hexviews] [B] structures [[eums B mports] B Epers [
Function name ~ .text:00401440 argc = dword ptr 4 ~
b cotsce . text:808481448 argy = dword ptr 8
::b_‘tOLIEO ‘:::mim envp = dword ptr 6Ch List cross references to... Ctrl+X
sub_4010A0 A :
& . text:ee401440 mov eax, [esptargc]
sub_s01070 . text:884081444 sub Esp: 44h [5] Enter comment..
sub_401040 - text: 684681447 cmp eax, 2] Enter repeatable comment...
sub_401000 . text:90401444 push ebx
start . text:0040144B push ebp f Editfunction.. Alt+P
nulisub_1 . text:8848144C push esi et v
_main . text : 86401440 push edi j’ BESS
_initterm . text:0840144E jnz loc_4e1813 == Hide Ctrl+ Numpad+-
7| _except handlerd . text:9e4e1454 mov eax, [esp+S4h+argv]
7| controtf . text:88481458 mov esi, offset aWarningThi B Graphview
7|~ setdefouitprecison -:E:ttfmizzg mov eax, [eax+d] 5. Proximity browser Numpad+-
f| _XcptFiter - text: 0040 x Undef U
. text:80401460 loc 481468: ; CODE ndefine
. text:808481460 mov dl, [eax] ST N
< > 00001440 00401440: _main, (Synchronized with Hex View-1) §* Add breskpoint F2
Line9 of 14 <
Dlenie M iefs graph to...
utput vrin
fN refs graph from...
Caching 'Functions window'... ok -
— ‘ |._D EopyHax Ctrl+H
AU: idle Dawin Disk: 31GB itz

3. Analyze the flow of code and observe how it branches based on conditional statements.

Using IDA's Search Capabilities

IDA provides powerful search capabilities that let you search for text, immediate values, sequences of
commands, etc.

Exercise: Using IDA's Search
To search for text, navigate to 'Search' -> 'Text'. Type the text you wish to find and click 'OK".

FILEO1.exe - O X

SH e[HE S 3 W EQ)E

Gt FeF X > DO - w@ @

Library function [ll Regular function [l Instruction Data Unexplored External symbal
Functions windaow O & x 104 View-a [£] “ Text search (slowl) s pums 0 mports [(28] Expors (1]
Function name N ~ -jﬂ:m . ~
.dataf __ : B

L] sub_4014E o] B [EEER] Fee: mainss7t0

f | sub_s011E0 .datay -

7 sub_i01080 data [Metch case VOUR_MACHINE®,@

£ | sub_s01070 .data [Regutar expression XREF: _main+l8to

¥ sub_401040 .datad

7 sub_401000 .datad [[] rderter XREF: star

F| start .datay D;e“h Up

7| nulsub_1 .datad YREE: =

2 datal [Find =l occurrences E

F| _initterm .datay XR

g bt “dnead — R

= - .data XREF

< > 00D30BO DD403DBD: data:aWamning ThisWil [Synchranized with Hex View-1) v
Line 7 of 14 <

Output window 08 x
[search completed —]
== |
AU: dle Do Disk: 51GB

196

ThinkCyber | NX Malware Analysis

Code Annotations
IDA allows you to annotate disassembled code, providing context, notes, or labels that can enhance

your understanding.

Exercise: Annotating Code
1. Inthe disassembly window, click on the line of code you wish to annotate.

“ IDA - FILEO1.exe C\Users\Malware\Desktop\basicstatic\basicstatic\FILEQ1.exe - O X

File Edit Jump Search View Debugger Options Windows Help

[l - IR 5 3 v DO R DAl ool g Fvs o X p D O rodbuge - = @

I | 1l ; -
Library function [ll Regular function [l Instruction Data Unexplored External symbol
[F] Functions vindowe O & X | [Eoavewal [Q vecviewr1] (B sucwrss [[E] ewms [Imports [Exports [
Function name ~ - text:6a401440 ~
.text:00401440 ; =============== S UBROUTINE
1 sub_s01000 . text:00401440
L sub_sioi0 . text:80401440
£ sub_401070 .text:98401448 ; int _ cdecl main(int argc, const char **argv, const char **envp)
| sub_4010A0 . text:0848144@ _main proc near ; CODE XREF: start+DElp
£ sub 401180 . text:pa481440
¥ _main . text:06401448 var 44 = dword ptr -44h
f| start . text:08401440 var_40 = dword ptr -48h
71 xcotFiter e
< > 00001440 DO401440: _main (Synchronized with Hex View-1) v
< >
Output window O &8 x
Fog 5 JF -
Function argument information has been propagated
v

The initial autoanalysis has been finished.
|
AUz idle Down Disk: 91GE

2. Press "' (colon) and enter your annotation in the dialog box that opens, then click 'OK'.

- O X

@
13

are\D

“Please enter text b " > T - -

I = - [.

x - user input|

Library function [l Regular function [l 1n|
Functonswindow 0 8 X [Epors [

Function name ~
£ | sub_401000
7| sub_401040
| sub_s01070 char **envp)
; su:joloa\o [art+DELp
sub_4011E0
7
Fil
i

_main
start
McotFiter

Output windove
) 5 JF = B

Function argument information hasg Cancel Help &~

The initial sutoanalysis has been
o | \
AUz idle Down Disk: $1GE

3. Your comment will now appear next to the line of code. This is useful for leaving notes about
what a particular function or block of code does.

197

ThinkCyber | NX Malware Analysis

“ |DA - FILEDT.exe C\Users\Malware\Desktop\basicstatic\basicstatic\FILEQ1.exe - O X

File Edit Jump Search View Debugger Options Windows Help

B e HES S) e MO EEE OFNS M ddE F v X > O O|Nodbugs | =
I Il I -

Library function [l Regulzr function [l Instruction Dats Unexplored External symbol

[F] Funcionsvindow 0 8 x [Hmaveral [0 Heviews [&] structures E ewms Imports @] Expors
Function name ~ Ltext:@8401448 argc = dword ptr 4 ~
. text:00401448 argyv = dword ptr &
sub 401000 text:BB481448 envp = dword ptr ach
sub_i01040 . text: 0461440
sub_101070 . text:0Pe401448 mov eax, [esp+argc] ; x - user input
sub_3010A0 .text:00481444 sub esp, 44h ; Integer Subtraction
sub_3011E0 . text: 08481447 cmp eax, 2 ; Compare Two Operands
_main . text: 08481444 push ebx
start “ . text: 08401448 push ebp
F | XcotFilter
> 00001440 0D4D1440: _msin (Synchronized with Hex Viev-1) v
< >
Output windaw O &8 x
) 5 JF s .
Function argument information has been propagated
The initial autcanalysis has been finished. hd
]|
AU: idle Down Disk: 31GB

Using the HexRays Decompiler
The HexRays Decompiler is a separate product that integrates with IDA to provide C-like pseudocode
from the disassembled code, making it easier to understand.

Exercise: Using the Decompiler
1. Open a function in the disassembly window.
2. Navigate to 'View' -> 'Open subviews' -> 'Pseudocode’ or press 'F5' to view the decompiled
code.

ﬂ IDA - FILEDS C:\Users\Malware\Desktop'\basicstatic\basicstatic\FILEOS — O X

File Edit Jump Search View Debugger Options Windows Help

BHiers~ 5) @@ Ef: OFAS M| bl FvFe X » Nodsbuggs = > (] »

Al | I -
Library function [l Regular function [l Instruction Datz Unexplored External symbal

Functions window O & X IDA View-A Pseudocode-A @ @ Hex View-1 Structures Ej Enums Imports @ Exports

Function name 55 CreateMutexa(s, ©, Name) ~
. 23 reatebutexA(@, @, Name);
7] pitkaingxax) 24 if (IWSAStartup(@x202u, &WSAData))
_ alloca_probe 5 T
—CRT_INIT(xxx} 26 v3 = socket(2, 1, 6);
(7] DllEntryPoint 27 if (v3l=-1)
_initterm 28 {
29 name.sa_family = 2;
3@ *(_DWORD *)&name.sa_data[2] = inet_addr(cp);
31 *(_WORD *)name.sa_data = htons(@x56u);
32 if (connect(v3, &name, 16) = -1)
33 {
< *] @3 while (send(v3, ::buf, strlen(::buf), @) = -1 && shutdown(v3, 1) I= -1)
0DOD104F _DilMain@12:22 {10D0104F) v
Outputwindnw o &8 x
Propagating type information... ~

Function argument information has been propagated
The initial autocanalysis has been finished.

18626@854: using guessed type char byte_18026854; v
Python
AU: idle Down Disk: 91G8

While decompiled code is easier to read, it might not always be accurate, and it's important to refer
back to the assembly when necessary.

198

ThinkCyber | NX Malware Analysis

Keyboard Shortcuts in IDA

1.

Navigation

= Space: Toggle between graph view and text view.

= Esc: Go back to the previous location.

= Ctrl + Enter: Go forward to the next location.

= N: Rename a function, variable, or label.

= ;:Add a comment.
Searching

= Alt + T: Text search.

= Alt + B: Binary search.

= Alt + F: Find next occurrence of the last search.
Functions

= P: Create a function at the current location.

= U: Undefine a function at the current location.
Cross-references

= X:Show cross-references to the item under the cursor (such as a function or variable).

= Ctrl + X: Show cross-references from the item under the cursor.
Debugging

= F2: Set or clear a breakpoint.

= F7: Step into a function.
= F8: Step over a function.

String analysis: Shift + F12 to list all strings in the binary. This can often provide useful insights
into the malware's functionality.

Imports/Exports: Ctrl + E to list all exported functions, Ctrl + | to list all imported functions.
These can give clues about the malware's capabilities.

Graphing: Use the Function Call Graph (View -> Graphs -> Function call graph) to get a high-
level overview of the program's control flow.

Hex View: Shift + H to open the Hex View. This can be useful for examining raw binary data.

199

ThinkCyber | NX Malware Analysis

Debugging with IDA

Setting up the Debugger
IDA supports several different debuggers, including the local Windows debugger, WinDbg debugger,

remote GDB debugger, Bochs debugger, remote iOS debugger, and Android debugger. The choice of
debugger will depend on your specific situation.

Let's start with the local Windows debugger, which is suitable for most Windows-based malware.

1. Load the executable file you want to debug into IDA.
2. Go to the Debugger menu and select Select Debugger.

f Hie®~=~ ‘}}g ‘Pu Lﬂj % E N ry] & g‘ Select a debugger X lcal Windows debugger ¥ | % @ H‘* »
' il -
Available debuggers
Library function [l Regular function [l Instruction Data © No debugger

[7] Functions window O & X ma vie.. B Pseudd () | ocal Bochs debugger [Flen ¥ mp Hexp

Function name ~ (@) Local Windows debugger

[F] j_FindPEsection O PIN tracer

[F] i__rTc_InitBase

[F] _rTC_stackFaiure(void *,ct (O Remote GDB debugger

@ i__crt_debugger_hook w (C) Remote Windows debugger

i 2 () Trace replayer

el () windbg debugger

i, Graph overvien 0O & X

- Default debuggers (autoselected for new databases):
win32
[[¥
[set as default debuager [v)
loestiaca I
64.00% (143,47) (107,2) 0000074 5]
Conce

E Qutput window O & x
|F1ushing buffers, please wait...ok —:—I
Python | |
AU idle Down Disk: 92GB

3. Inthe list of debuggers, select Local Windows debugger. This will set IDA to use the Windows
debugger for the current session.

Basic Debugging Controls
Here are the most commonly used controls in IDA Debugger:

= F2: Set or clear a breakpoint at the current line.
= F9: Start or continue execution until the next breakpoint.

= F7:Stepinto a function, i.e., follow the function call and pause execution at the first instruction
inside the function.

= F8: Step over a function, i.e., run the entire function and pause execution at the next
instruction after the function call.

These controls allow you to navigate through the code and control the execution flow.

Running the Program
Let's run the program to see what it does. Click on the Debugger menu and select Start Process. If the
program requires command-line arguments, you can provide them in the dialog box that appears.

200

ThinkCyber | NX Malware Analysis

“ IDA - crackme-121-1.exe ChUsers\Malware\Desktop\RE\rev_1211\crackme-121-1.exe - [m} X
File Edit Jump Search View Debugger Options Windows Help
f E @vo % E; Quick debug view Ctrl+2 v aﬁ' [l x P [@ O Local Windows debugger L @ Rﬂ’ »
: Debugger windows L4 II i |: T
Library function [l Regular functior Breakpoints ¥ hal symbal
\zl Functions window O & X E Watches Yo hovie [&] struct Elen EEl Imp @ Exp
Function name Al =0y, '
% j__FindPESection | B Start process Fo
é J_Egjsct;::::zree[void = Attach to process...
@ j__crt_debugger_hook ™ Process options...
< > O Pause process
Line 22 of 103 O Terminate process Ctrl+F2

Ao Graphoverview 0O & X Detach from process

Refresh memory

Take memory snapshot

sl
B Step into F7 [= 1
-) £ lees113c2 I
g4 Stepover = +22 (Synchronized with Hex View-1)
— @;‘_) Run until return Ctrl+F7
E Output window o & x
B Runto cursor F4

Flushing buffers, please wait

Python %] Switch to source
Al idle Down Disk: 92GB Q Use source-level debugging

Open source file...

Debugger options...
Switch debugger...

Once the program starts, IDA will switch to the disassembly view, showing the current instruction
highlighted. You can now use the step-into and step-over commands to navigate through the code.

Setting Breakpoints

Breakpoints are a useful tool for controlling the execution flow. For example, if you're interested in a
particular function, you can set a breakpoint at the function's entry point, and the program will pause
execution when it reaches that point.

Let's say we have a function named malicious_activity and we want to examine its behavior. Here's
how you set a breakpoint:

4. Inthe Functions window, click on the malicious_activity function. This will take you to the start
of the function in the disassembly view.

5. Press F2. Ared highlight appears on the current line, indicating that a breakpoint has been set.

6. Now, when you run the program, it will pause execution as soon as it reaches the
malicious_activity function.

Inspecting Program State
When the program execution is paused, you can inspect the program's state. This includes the contents
of memory, the values of CPU registers, the call stack, and more.

Here are some useful views:

e Registers window: This shows the current values of the CPU registers. This can help you
understand what the program is currently doing.

e Stack view: This shows the current state of the stack. This is particularly useful for
understanding function calls and local variables.

e Memory view: This allows you to examine the contents of memory. This is useful for
investigating data structures, buffers, etc.

201

ThinkCyber | NX Malware Analysis

Identifying Windows Malware Characteristics

Identifying Malware Behavior
Malware usually exhibits certain behaviors that allow them to accomplish their malicious intent.

Exercise: Identifying Malicious Behavior
1. Open a malware sample in IDA.
2. Start by examining the Imports window, as malware often makes use of system APIs to perform
malicious activities.
3. Look for suspicious API calls like CreateRemoteThread, WriteProcessMemory, RegSetValueEx,

or ShellExecute.
4. Investigate the API calls and the surrounding code to get a sense of what the malware might

be trying to accomplish.

Persistence Mechanisms
Most malware will try to ensure it remains on the system even after a reboot, a trait known as

persistence.

Exercise: Identifying Persistence Mechanisms
1. Inthe same malware sample, look for API calls that could be used to achieve persistence.
2. Calls like RegSetValueEx, CopyFile, CreateService, or WriteFile can often be associated with
persistence mechanisms.

ﬂ IDA - FileD2.exe C\Users\Malware\Desktop\malware\File02.exe — [} e

File Edit Jump Search View Debugger Options Windows Help

SHi e B S e @O IR OFACGHM Il FF-Fa X > DO

i I v
Library function [l Regular function [l Instruction Data Unexplored External symbal
[F] Functions vindew O & X | [[Z| 104 View-a 3] Hex viewr-1 [A] Structures] enums Elimpors [2] expors
Functicn name Address Ordinal MName Library
E start Y| 00406064 LoadLibraryA KERNEL3Z
%E| 00406058 GatProcAddress KERNEL32
%E| D0406DEC VirtuzlProtect KERNEL32
%E| 00406070 Virtualalioc KERNEL32
YE| 00406074 VirtualFres KERNEL32
YE| 00406078 ExitProcess KERNEL32
3 ‘CreateServiceA ADVAPIZ2
VE| 00406085 it MSVCRT
YE| 00406050 InternatOpenA WININET
< >
Line 7 of 9
[5] output window Oa x
The initial autocanalysis has been finished. =
Pyther ||
AU: idle Dowin Disk: 31GE

3. Identify how these APIs are being used. Is the malware writing to the registry to auto-start? Is
it installing itself as a service?

Network Communications
Many types of malware will communicate over the network, either to exfiltrate data, receive
commands, or download additional components.

Exercise: Identifying Network Communications

1. Look for API calls associated with network communication, such as socket, connect, send, recy,
InternetOpen, InternetReadFile, etc.

202

ThinkCyber | NX Malware Analysis

“ IDA - File02.exe C\Users\Malware\Desktop\malware\File02.exe - | X

File Edit Jump Search View Debugger Options Windows Help
pE e nme 8) o D0 EE: OSASHE et P X b » & »

I I III _‘ e

Library function [l Reguizr function [l Instruction Datz Unexplored External symbol

Funcionsvindow 0 & X | [[E] A Viewa (D] Hex View-1 [B] structures [F] enums PRl mperts @ 2] Exports
Function name Address Ordinal MName Library
start ¥Z) 00405064 LoadUibraryA KERNEL32
VE] 0406065 GetProcAddress KERNEL3Z
Wz DO40E06C VirtuslProtect KERNEL32
%z DO405070 VirtuslAlloc KERNEL32
%] DO405074 VirtuslFree KERNEL32
9= 00406078 ExitProcess KERNEL32
9| 00406080 CresteServiceA ADVAPI32
9| D040608S exit MSVCRT
{InternetOpenA | WININET
< >
LineS of 9

[=] output window Oo&a x

The initial autoanalysis has been finished.
Pythen ||
Al: idle Dowvin Disk: 31G8

2. Try to identify what data the malware might be sending and where it might be sending it. The
addresses it connects to could be hardcoded in the binary, or they might be obfuscated or
encrypted.

Evasion Techniques
Malware often uses evasion techniques to avoid detection by security software or analysts.

Exercise: Identifying Evasion Techniques
1. Look for API calls that could be used for process manipulation, such as CreateProcess,
WriteProcessMemory, or CreateRemoteThread. These could be used for process injection, a

common evasion technique.

ﬂ IDA - Dynamic01 C\Users\Malware\Desktop\basicdynamic\Dynamic01 — O X

File Edit Jump Search View Debugger Options Windows Help
BH e nn s) o/ 00 IFn OThCSHE it FrFeX > |) »

Library function [ll Regular function [l Instruction Datz Unexplored External symbol

Functions window [0 & X IDAVEWA [B] Hex view-1 [B] structures =] Enums 1mpcrts B8 @ Exports
=
A

Function name A || Address Ordinal Name Library

sub_401000 ¥Z| DD40BOGC ‘CompareStringA KERNEL32
sub_401070 wE| DD40B0GE ‘CompareStringW KERMEL32

sub_401210 %E) 0040B034 CapyFieA KERMEL32
sub_401280 E| 0040B054 CresteFilza KERNEL3Z
sub_401420 CrestePipe KERNEL3Z
sub_401470 iCreateProcessA KERMEL32
sub_4014E0 CreateServicef ADVAPIIZ
sub_401580 =] 0040B0G0 DeleteFieA KERNEL3Z
7| sub_401640 ™ || #z) oosomozs DelsteService ADVAPTIZ
< > %E| 0040BOED DuplicateHandle KERMEL32 ~

Line 9 of 87
Output window
The initial autocanalysis has been finished.
ython ||
AU: idle Dowin Disk: 1GB

2. Look for calls like IsDebuggerPresent or CheckRemoteDebuggerPresent. These could be used
as anti-debugging techniques to make analysis more difficult.

203

ThinkCyber | NX Malware Analysis

The Stack in IDA

In computer science, a stack is a data structure that serves as a collection of elements with two main
operations: push and pop. Elements are always added (pushed) and removed (popped) from the top
of the stack. This principle is often referred to as LIFO (Last In First Out).

In the context of IDA Pro and malware analysis, understanding the stack is fundamental. The system
stack is heavily used by programs for various tasks like storing local variables, passing parameters to
functions, and managing return addresses for function calls.

The Stack in Assembly
In assembly language, the stack is a region in memory that's managed in a LIFO manner. Two primary
assembly instructions interact with the stack:

= push: Places a value onto the top of the stack.
= pop: Removes a value from the top of the stack.

The esp register (Stack Pointer) points to the top of the stack. Each time we push a value, it decreases
(since the stack grows "downwards" in memory), and each time we pop a value, it increases.

The ebp register (Base Pointer) is also crucial. It typically points to a fixed location within the stack
frame and is used as a reference point to access local variables and function parameters.

The Stack Frame
Each time a function is called, a new "stack frame" is created for that function's use. The stack frame
contains:

= Function parameters: These are values passed into the function by the caller.

= Return address: The address in the code to jump back to when the function completes.
= Saved base pointer: The previous function's ebp value.

= Local variables: Variables declared within the function.

Here's a typical example of what happens when a function is called:

1. The caller pushes the function parameters onto the stack.

2. The caller pushes the return address onto the stack (this is done automatically by the call
instruction).

3. The callee (the function being called) pushes the old ebp onto the stack. This allows it to
restore the ebp when the function is done.

4. The callee moves the esp into ebp to create a new base for the stack frame.

5. The callee decreases esp to make space for local variables.

This might seem overwhelming, but with practice, you'll get the hang of it.

204

ThinkCyber | NX Malware Analysis

Advanced Reverse Engineering

Advanced reverse engineering refers to the process of analyzing and understanding the inner workings
of a technology, system, or software by examining its design, structure, and behavior. Reverse
engineering involves deconstructing and examining an existing product or system to extract valuable
information, such as its algorithms, protocols, or underlying principles.

While traditional reverse engineering focuses on understanding the functionality of a product or
system, advanced reverse engineering takes it a step further by delving into more complex and
intricate aspects. It typically involves applying sophisticated techniques and tools to gain a deeper
understanding of the target technology.

Here are some key aspects of advanced reverse engineering:

1. Binary Analysis: Advanced reverse engineering often involves analyzing the binary code of
software or firmware. This entails examining the low-level instructions and data structures to
uncover the logic and functionality of the program.

2. Code Deobfuscation: Many software applications employ obfuscation techniques to make the
code more difficult to understand or reverse engineer. Advanced reverse engineering
techniques involve deobfuscating the code to reveal its original structure and logic.

3. Vulnerability Research: Advanced reverse engineering plays a crucial role in vulnerability
research and discovering security flaws in software or systems. By examining the code,
analyzing the software's behavior, or fuzzing techniques, researchers can identify potential
vulnerabilities that can be exploited.

4. Protocol Analysis: Reverse engineering is often used to understand proprietary or
undocumented protocols. By capturing network traffic or analyzing communication between
different components, researchers can decipher the protocols used and gain insight into how
the system operates.

5. Hardware Reverse Engineering: Advanced reverse engineering is not limited to software; it
can also involve analyzing the hardware components of a system. This includes understanding
the integrated circuits, circuitry, and electronic components to reverse engineer the
functionality or design of a device.

6. Code Reconstruction: Advanced reverse engineering can go beyond merely understanding the
code and involve reconstructing the original source code or high-level design of a system. This
process aims to create a more abstract representation of the software or system, facilitating
further analysis or modification.

205

ThinkCyber | NX Malware Analysis

Code Flow and Control Structures

Understanding code flow and control structures is crucial in the field of advanced reverse engineering.
Gaining insights into these aspects allows you to effectively analyze and deobfuscate complex code,
discover hidden functionality, and identify malicious behavior.

Control Structures in Assembly

When reverse engineering, you will often work with assembly code, as it is the lowest level of human-
readable code. Understanding the basic control structures in assembly, such as jumps, loops, and
conditional branches, is essential for analyzing code flow.

Jumps
Jumps are used to transfer control from one part of the code to another. In assembly, jumps can be
unconditional (JMP) or conditional (e.g., JZ, JNZ, JE, INE).

Example:

section .text
global _start

_start:
mov eax,5 ;SetEAXto5

cmp eax, 10 ; Compare EAX with 10
jlless_than ; Jump if less than 10
jg greater_than ; Jump if greater than 10

equal_to:
; Code executed if EAX is equal to 10

jmp end

less_than:
; Code executed if EAX is less than 10

jmp end

greater_than:
; Code executed if EAX is greater than 10

) eee

end:
; Code after the conditional jumps

) eee

206

ThinkCyber | NX Malware Analysis

Exercise: Analyze the following assembly code snippet and determine the value of eax at the end.

section .text
global _start

_start:
mov eax, 1 ;EAX =1

jmp label2 ; Jump to label2

labell:
add eax, 3 ; EAX=EAX +3
jmp end ; Jump to end

label2:
add eax, 2 ; EAX=EAX +2
jmp labell ; Jump to labell

end:
; Exit the program
mov ebx, eax
mov eax, 1
int 0x80

In this code, the jmp instruction is used to control the flow of execution. The program starts by
initializing the EAX register to 1. It then jumps to label2, where it adds 2 to EAX. It then jumps to labell,
where it adds 3 to EAX. Finally, it jumps to end, where it moves the value of EAX into EBX and then
exits.

The question for this would be: "What is the value of the EAX register at the end of execution?" The
answer is 6, because 1 +2 +3 =6.

Loops
Loops in assembly are typically constructed using jump instructions and loop counters. Common loop
instructions include LOOP, LOOPZ, and LOOPE.

Example:

section .text
global _start

_start:

mov ecx, 5 ; Set loop counter to 5

LoopStart:
; Code to be repeated

) oo

207

ThinkCyber | NX Malware Analysis

; Print a message

mov edx, message_len ; Length of the message
lea ecx, [message] ; Address of the message
int 0x80 ; Invoke system call

loop LoopStart ; Decrement ECX and jump to LoopStart if ECX is not zero

; Exit the program

mov eax, 1 ; System call number for exit
xor ebx, ebx ; Exit code 0

int 0x80 ; Invoke system call

section .data
message db 'Hello, World!', 10
message_len equ $ - message

In this code, the program starts at the _start label. The ECX register is initially set to 5 using the mov
instruction to serve as the loop counter.

The code inside the LoopStart section represents the block of code that will be repeated in the loop.
In this case, it prints the message "Hello, World!" to the standard output using the write system call.

After executing the code inside the loop, the LOOP instruction decrements ECX and jumps back to the
LoopStart label as long as ECX is not zero.

Once ECX becomes zero, the loop terminates, and the program proceeds to the code after the loop.
Finally, the program exits by invoking the exit system call with an exit code of 0.

Exercise: Analyze the following assembly code snippet and determine the value of ebx at the end.

section .data

section .text
global _start

_start:
mov ebx, 0 ; Initial value of ebx
mov ecx, 5 ; Loop 5 times

myloop:
add ebx, 2 ; Add 2 to ebx each iteration
loop myloop ; Loop until ecx == 0

; Exit

mov eax, 1 ; System call number (sys_exit)
xor ebx, ebx ; Exit code

int 0x80 ; Call kernel

208

ThinkCyber | NX Malware Analysis

Analyzing Code Flow

Control Flow Graphs (CFGs)

Control flow graphs are a visual representation of the code flow within a program, showing the
relationships between basic blocks of code. CFGs can be created manually or generated using reverse
engineering tools such as IDA Pro or Ghidra.

Example:
1. Load a compiled program into IDA Pro or Ghidra.
2. Navigate to the function you wish to analyze.
3. Generate a control flow graph for the function using the tool's built-in features.

Exercise:
1. Choose a compiled program written in a programming language you are familiar with.
2. Generate a control flow graph for one or more functions within the program using a reverse
engineering tool.
3. Analyze the control flow graph to identify control structures, loops, and potential obfuscation
techniques.

Example:
1. Load a compiled program into a disassembler or static analysis tool.
2. Examine the code flow and control structures within the program, identifying patterns and
potential obfuscation techniques.
Exercise:
1. Choose a compiled program or sample malware.

2. Perform a static analysis of the code, focusing on the code flow and control structures.
3. Identify any obfuscation techniques, hidden functionality, or malicious behavior.

209

ThinkCyber | NX Malware Analysis

Identifying and Analyzing Function Calls and Libraries

Reverse engineering is an essential process for understanding the inner workings of software, both for
legitimate purposes such as vulnerability assessment and malware analysis and for potentially illicit
activities like cracking software protections.

Identifying Function Calls

Function calls are fundamental building blocks in most programming languages. ldentifying function
calls in a disassembled or decompiled program can provide valuable insights into its behavior.

Direct and Indirect Function Calls

There are two primary types of function calls: direct and indirect. Direct function calls involve the target
function's address being specified directly, while indirect function calls use registers or memory
locations to hold the target address.

Example of a direct function call in x86 assembly:

call 0x400080 ; Calling the function at the address 0x400080

This example is a simple program that calls a function at a specific address (0x400080). The function
at this address moves the value 5 into the ebx register and then returns to the caller. The call instruction
is used to call the function at the given address, and the ret instruction is used to return from the
function.

Example of an indirect function call in x86 assembly:

section .text
global _start

_start:
mov eax, target_address ; Move the target address into EAX

call eax ; Indirect call using EAX as the target address

; Rest of the code

section .data
target_address dd 0x400080 ; Target address stored in a data section

210

ThinkCyber | NX Malware Analysis

Code Injection, Hooking, and Hijacking

Code Injection
Code injection is a technique where an external process introduces and executes arbitrary code within
the address space of another process.

Process Injection on Windows

Process injection is a method of executing arbitrary code in the address space of a separate live
process. Running code in the context of another process allows attackers to make their actions harder
to detect, as the injected code can be masked as legitimate activity. It can be used by malware for
persistence and evasion from some security solutions.

Here is a simplified step-by-step illustration of how process injection might work in a Windows
environment:

1. Identify a target process: The first step is to find a process into which code will be injected.
Often, malware will look for processes that are likely to be running on the victim's machine
and are unlikely to attract attention.

2. Open the target process: The malware must open the target process with certain rights that
allow for writing and code execution. This can be done using the OpenProcess() function in
the Windows API.

3. Allocate space in the target process: The malware must allocate space in the target process's
memory to write the code to be executed. This can be done using the VirtualAllocEx() function
in the Windows API, which allows for memory allocation in another process's address space.

4. Write the code into the target process: The malware writes the code to be executed into the
newly allocated memory space. This can be done using the WriteProcessMemory() function in
the Windows API.

5. Execute the injected code: The malware must create a new thread in the target process that
starts executing the injected code. This can be done using the CreateRemoteThread() function
in the Windows API.

6. Cleanup (optional): In some cases, the malware may clean up traces of the injection to further
avoid detection, using functions like VirtualFreeEx() to deallocate the memory, and
CloseHandle() to close the handle to the process once the injection is done.

This is a high-level overview and actual implementations may vary. Also, modern security solutions are
quite adept at detecting classic process injection techniques, so malware often employs more

sophisticated techniques to avoid detection.

In the CreateRemoteThread method, you write code directly into the process's memory using
WriteProcessMemory, then create a new thread with CreateRemoteThread to execute that code.

211

ThinkCyber | NX Malware Analysis

Example of code injection using CreateRemoteThread:

// Assume we have a handle to the target process in hProcess

// Allocate some memory in the target process
LPVOID pRemoteCode = VirtualAllocEx(hProcess, NULL, sizeOfCode, MEM_COMMIT, PAGE_EXECUTE_READWRITE);

// Write our code into the allocated memory
WriteProcessMemory(hProcess, pRemoteCode, pCode, sizeOfCode, NULL);

// Create a new thread in the target process to execute our code
HANDLE hThread = CreateRemoteThread(hProcess, NULL, O, (LPTHREAD_START_ROUTINE)pRemoteCode, NULL, O, NULL);

Hooking

Malware often uses hooking techniques to intercept system calls, alter the behavior of applications or
hide its presence. Here's a practical example of how this might work in the context of a Windows
environment:

1. Identify a function to hook: Malware often targets critical Windows API functions that are
used for system operations, such as file handling, network communications or process
management. For instance, the ReadFile() function, which is used to read data from a file,
could be a potential target.

2. Write a hook function: The malware author would write a hook function to replace or
augment the behavior of the original function. For example, if the ReadFile() function is being
hooked, the malware could replace it with a function that checks if the file being read contains
certain information. If it does, the malware could either block the file read operation, alter the
data being read, or log the data for later use.

3. Install the hook: The malware needs to install the hook, so that calls to the original function
are redirected to the malicious hook function. There are several techniques to do this:

o Inline hooking: The malware could modify the code of the ReadFile() function directly in
memory. This is typically done by replacing the first few bytes of the function (the
function's prologue) with a jump instruction that points to the malicious hook function.
The original prologue is saved and executed in the malicious hook function to maintain the
original functionality.

o Import Address Table (IAT) hooking: The malware could also modify the Import Address
Table of a process. The IAT is used by the Windows loader to resolve function addresses at
load time. By changing the address of ReadFile() in the IAT to point to the malicious hook
function, all calls to ReadFile() would be redirected to the malware's function.

o API Splicing: This technique involves modifying the function prologue similar to inline
hooking, but also altering the original function's bytes at the end of the function to jump
back to the malicious code, creating a splice. This is a more stealthy and resilient form of
hooking.

These techniques are often used by malware to evade detection and carry out malicious activities.
Antivirus software often includes mechanisms to detect such hooking techniques and alert the user or

212

ThinkCyber | NX Malware Analysis

block the malware. Understanding these techniques is key for both malware analysis and the
development of effective antivirus tools.

The following exercise examples should only be performed in a controlled, isolated environment:

1. Understanding Windows APIs and DLLs: Write a simple program that makes use of some
common Windows APIs, such as file or network-related APIs, and trace these API calls using a
debugger or a similar tool.

2. Understanding Inline Hooking: Write a simple program and then manually modify its memory
using a debugger to change the flow of the program. You can use this exercise to understand
the concept of inline hooking without actually installing a hook.

3. Understanding IAT Hooking: An exercise for understanding IAT hooking could involve
inspecting the IAT of a process. You can use tools like Process Explorer to do this. You can then
modify your own program to change the addresses in the IAT and observe how it affects the
program's behavior.

4. Understanding API Splicing: Write a simple program that calls a certain API, and then using a
debugger to manually modify the program's memory to alter the API's behavior.

5. Detecting Hooking: Write a program that can detect hooking techniques. This could involve
scanning the IAT for unusual addresses, checking for modifications to a function's prologue, or
checking for jumps at the end of functions (indicative of API splicing).

6. Reverse Engineering Malware: For advanced learners, a useful exercise would be to reverse
engineer real-world malware samples (in a safe and controlled environment) to see how they
use hooking techniques. This can provide a practical understanding of how hooking is used in
the wild.

This example uses the Windows API and is written in C. The program scans the Import Address Table
(IAT) of kernel32.dll for suspicious function addresses that may indicate hooking.

#include <windows.h>
#include <stdio.h>

// Get the IAT of kernel32.dll
IMAGE_IMPORT_DESCRIPTOR* getIAT(HMODULE module) {

IMAGE_DOS_HEADER* dosHeader = (IMAGE_DOS_HEADER*)module;
IMAGE_NT_HEADERS* ntHeaders = (IMAGE_NT_HEADERS*)((BYTE*)module + dosHeader->e_Ifanew);

return (IMAGE_IMPORT_DESCRIPTOR*)((BYTE*)module + ntHeaders-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress);

}

213

ThinkCyber | NX Malware Analysis

int main() {
HMODULE module = GetModuleHandle("kernel32.dIl");
IMAGE_IMPORT_DESCRIPTOR* iat = getlAT(module);

while (iat->Name) {
char* libName = (char*)((BYTE*)module + iat->Name);
if (_stricmp(libName, "kernel32.dIl") == 0) {
IMAGE_THUNK_DATA* thunk = (IMAGE_THUNK_DATA*)((BYTE*)module + iat->OriginalFirstThunk);
while (thunk->ul.AddressOfData) {
IMAGE_IMPORT_BY_NAME* import = (IMAGE_IMPORT_BY_NAME*)((BYTE*)module + thunk-
>ul.AddressOfData);
FARPROC funcAddress = GetProcAddress(module, (LPCSTR)import->Name);

if (funcAddress != (FARPROC)((BYTE*)module + thunk->ul.Function)) {
printf("Hook detected: %s\n", import->Name);

}

thunk++;

return O;

}

This C program is inspecting the Import Address Table (IAT) of the kernel32.dll module for any function
hooking. The IAT is a table that a Windows executable uses to call functions in dynamically linked
libraries (DLLs). When a function is hooked, its entry in the IAT is changed to point to a different
function. This can be used by both legitimate software and malware to alter the behavior of function
calls. Here's a breakdown of what the program does:

o The getlAT function takes a module handle and returns a pointer to its IAT. It does this by:

o First, casting the module handle to a IMAGE_DOS_HEADER pointer. This is a struct that
represents the DOS header of the executable, which is always at the start of a Windows PE file.

o Then, it calculates a pointer to the NT headers, which follow the DOS header. This is done by
adding the e_lfanew field of the DOS header (which stores the file address of the NT headers)
to the base address of the module.

o Finally, it calculates a pointer to the IAT by adding the VirtualAddress of the IAT (which is stored
in the DataDirectory array of the optional header) to the base address of the module.

e The main function:

o First, gets a handle to the kernel32.dll module using GetModuleHandle.
Then, it gets a pointer to the IAT of this module using getIAT.
o It iterates over each entry in the IAT using a while loop. Each entry represents a DLL that the
module imports functions from.
= For each entry, it checks if the DLL name matches "kernel32.dll". This is done by adding
the Name field of the entry (which is an offset from the base of the module to a null-
terminated string) to the base address of the module, and then comparing this string with
"kernel32.dll".

o

214

ThinkCyber | NX Malware Analysis

= [f the DLL name matches, it iterates over each function that the module imports from this
DLL. This is done by treating the OriginalFirstThunk field of the entry as an offset from the
base of the module to an array of IMAGE_THUNK_DATA structures, and then iterating over
this array.

= For each imported function, it first gets a pointer to its IMAGE_IMPORT_BY_NAME
structure, which contains the name of the function. This is done by adding the
AddressOfData field of the IMAGE_THUNK_DATA structure (which is an offset from the
base of the module to the IMAGE_IMPORT_BY_NAME structure) to the base address of
the module.

= Then, it gets the actual address of the function in memory using GetProcAddress.

= Finally, it checks if this actual address matches the address stored in the IAT. This is done
by comparing the funcAddress with the Function field of the IMAGE_THUNK_ DATA
structure (which is an offset from the base of the module to the function's entry in the
IAT). If these don't match, it prints a message indicating that a hook has been detected.

o After checking all the functions of a DLL, it moves to the next DLL by incrementing the IAT
pointer.

This program can detect a common form of IAT hooking where the IAT entry of a function is changed

to point to a different function. However, it won't detect more advanced forms of hooking that involve
changing the function code itself.

215

ThinkCyber | NX Malware Analysis

Hijacking

Code hijacking, also known as DLL hijacking, is a technique that can be used by an attacker to make a
legitimate application execute malicious code. The technique takes advantage of the way Windows
searches for DLLs (Dynamic Link Libraries) to load into a program.

When a Windows application starts, it often needs to load DLLs. Windows uses a specific search order
to find these DLLs. If the application does not specify an absolute path to the DLL, Windows will search
for the DLL in various locations in a specific order, which usually is:

The directory from which the application loaded.

The system directory.

The 16-bit system directory.

The Windows directory.

The current directory.

The directories listed in the PATH environment variable.

oukwNRE

In a DLL hijacking attack, an attacker places a malicious DLL with the same name as a legitimate DLL
that the application uses into one of the directories that Windows searches before it reaches the
directory that contains the legitimate DLL.

When the application starts, it loads the malicious DLL instead of the legitimate DLL, and the malicious
code in the DLL is executed.

Here's a simplified example of how you might demonstrate this:

1. Identify a target application that loads a DLL for which it does not specify an absolute path.
Let's say that the application loads a DLL named vulnerable.dll.

2. Create a DLL named vulnerable.dll that contains malicious code. This code will be executed
when the DLL is loaded. For example, the DLL might create a simple file on the desktop when
it's loaded:

#include <windows.h>
typedef void (*MYPROC)(LPWSTR);

// This is the malicious code that will be run when the DLL is loaded.
void RunMaliciousCode() {

system("echo This is a test > C:\\Users\\User\\Desktop\\test.txt");
}

// This function forwards calls to the legitimate DLL.

void ForwardCallToLegitimateDLL() {
HMODULE hmod = LoadLibrary(L"C:\\path\\to\\legitimate\\vulnerable.dll");
if (hmod != NULL) {
MYPROC ProcAdd = (MYPROC) GetProcAddress(hmod, "FunctionName");
if (NULL != ProcAdd) {
(*ProcAdd) (L"Message");
}
FreelLibrary(hmod);
}
}

216

ThinkCyber | NX Malware Analysis

BOOL APIENTRY DIlIMain(HMODULE hModule, DWORD ul_reason_for_call, LPVOID IpReserved) {
switch (ul_reason_for_call) {
case DLL_PROCESS_ATTACH:
RunMaliciousCode();

ForwardCallToLegitimateDLL();
break;

}
return TRUE;

}

3. Place your malicious vulnerable.dll in the same directory as the target application's executable
file.

4. Start the target application. Windows will find and load your malicious vulnerable.dll instead
of the legitimate vulnerable.dll, and the code in your DLL will be executed.

The purpose of this code is to demonstrate a technique where a malicious DLL disguises itself as a
legitimate DLL by forwarding calls to the legitimate DLL while also executing malicious code. This allows
the attacker to perform unauthorized actions while maintaining the appearance of normal operation
by utilizing legitimate functionality.

217

ThinkCyber | NX Malware Analysis

Code Obfuscation and Deobfuscation

Common Obfuscation Techniques

Obfuscation is the process of hiding or disguising the true intent, meaning, or functionality of a piece
of code or data. In the context of programming, obfuscation is often used by developers to protect
their intellectual property, prevent reverse engineering, or enhance the security of their software.
String Obfuscation

String obfuscation is the process of hiding or disguising the contents of a string. Developers often use
string obfuscation to protect sensitive information, such as API keys or passwords, from being easily
discovered in their code.

Example: Original string: "API_KEY"

Obfuscated string: "\x41\x50\x49\x5f\x4b\x45\x59"

Exercise: Obfuscate the following string: "PASSWORD"

Control Flow Obfuscation
Control flow obfuscation is a technique used to make the code's execution path more difficult to
understand. This can be achieved by introducing false conditional statements, loops, or other code

constructs that do not contribute to the actual functionality of the program.

Example: Original code

def add_numbers(num1, num2):
sum =numl + num2
return sum

result = add_numbers(3, 5)
print(result)

Obfuscated code:

import random
from math import sqrt
from datetime import datetime

def X012X(numX001, numX002):

dummy1 = sgrt(random.randint(1,100)) # dummy operation

now = datetime.now() # dummy operation

sumX001 = numX001 + numX002 - dummyl + dummyl # the dummy variable is added and subtracted, so it has no
effect

dummy?2 = now.year #dummy operation

return sumX001 + dummy2 - dummy2 # the dummy variable is added and subtracted, so it has no effect

resultX001 = X012X(3, 5)
dummy3 = sgrt(resultX001) # dummy operation
print(resultX001 + dummy3 - dummy3) # the dummy variable is added and subtracted, so it has no effect

218

ThinkCyber | NX Malware Analysis

Exercise: Obfuscate the following code snippet.

def factorial(n):
ifn==0o0orn==1:
return 1
else:

return n * factorial(n - 1)

number =5
fact = factorial(number)
print("The factorial of", number, "is", fact)

Variable and Function Renaming

Variable and function renaming is an obfuscation technique that replaces descriptive names with
meaningless or random names, making the code harder to understand.

Example: Original code

def calculate_area(length, breadth):
area = length * breadth
return area

length =5

breadth = 10

area = calculate_area(length, breadth)
print("The area is", area)

Obfuscated code:

def xYz(aBc, dEf):
mNop = aBc * dEf
return mNop

aBc=5

dEf =10

mNop = xYz(aBc, dEf)
print("The area is", mNop)

Exercise: Rename the variables and functions in the following code snippet.

def calculate_distance(speed, time):
distance = speed * time
return distance

def print_distance(distance):

print(f"The distance covered is {distance} units.")

speed =10

time=5

distance = calculate_distance(speed, time)
print_distance(distance)

219

ThinkCyber | NX Malware Analysis

Instruction Substitution

Instruction substitution is the process of replacing a simple instruction with a more complex, but
functionally equivalent, instruction set. This can make the code more challenging to analyze and
understand.

Example: Original code

def add_numbers(num1, num2):
return num1l + num?2

numberl =5

number2 = 10

sum_result = add_numbers(numberl, number2)

print("The sum of", numberl, "and", number2, "is", sum_result)

Obfuscated code:

def aBcD(xYz, wVu):
dummyl =0 #dummy command
dummy2 = xYz - (-wVu) # using subtraction and unary minus to simulate addition
return dummy2 + dummyl # adding a dummy command that doesn't affect the result

xYz=5

wVu =10

dummy3 = aBcD(xYz, wVu)

print("The sum of", xYz, "and", wVu, "is", dummy3)

Hands-on Tasks
Task:

1. Write a simple program in your preferred programming language.

Apply at least two obfuscation techniques from this chapter.

3. Share the original and obfuscated versions of the code with a peer, and analyze each other's
obfuscated code to identify the techniques used.

N

Task:

1. Find an open-source project with a well-documented codebase.

2. Select a small portion of the code and apply at least three obfuscation techniques.

3. Compare the obfuscated code with the original code and analyze the effectiveness of the
obfuscation.

By practicing these techniques through examples and hands-on exercises, you should have gained a

better understanding of how these methods can be applied to protect intellectual property, prevent
reverse engineering, and enhance software security.

220

ThinkCyber | NX Malware Analysis

Manual and Automated Deobfuscation Methods

Deobfuscation is the process of reversing the obfuscation techniques applied to a piece of code or data
to reveal its original form. Deobfuscation can be performed manually, by analyzing the obfuscated
code and applying reverse engineering techniques, or automatically, by using specialized tools
designed to identify and reverse obfuscation.

Manual Deobfuscation

Manual deobfuscation involves the careful analysis of obfuscated code to understand its functionality
and remove or reverse the obfuscation techniques applied to it. This can be a time-consuming process,
as it often requires a deep understanding of programming languages, assembly languages, and reverse
engineering techniques.

String Deobfuscation
Example: Obfuscated string: "\x41\x50\x49\x5f\x4b\x45\x59"
Deobfuscated string: "API_KEY"

Exercise: Deobfuscate the following string: "\x50\x41\x53\x53\x57\x4f\x52\x44"

Automated Deobfuscation
Automated deobfuscation involves the use of specialized tools and algorithms to identify and reverse
obfuscation techniques applied to a piece of code. These tools can often deobfuscate code more
quickly and efficiently than manual methods, although they may not always be successful in reversing
all obfuscation techniques.

Decompilers

Decompilers are tools that can convert compiled code (e.g., bytecode or machine code) back into a
high-level programming language, making it easier to analyze and deobfuscate. Examples of popular
decompilers include JD-GUI for Java and Ghidra for multiple languages.

Exercise:

1. Choose a compiled program written in a programming language you are familiar with.

2. Use an appropriate decompiler to convert the compiled code back into a high-level
programming language.

3. Analyze the decompiled code to identify any obfuscation techniques used and attempt to
reverse them.

Deobfuscation Tools
There are several tools available that are specifically designed to deobfuscate code. These tools can

automatically identify and reverse many common obfuscation techniques. Examples of popular
deobfuscation tools include de4dot (for .NET applications) and JADX (for Android applications).

221

ThinkCyber | NX Malware Analysis

Exercise:

1. Choose a piece of obfuscated code or an obfuscated application.

Use an appropriate deobfuscation tool to attempt to reverse the obfuscation techniques used.

3. Compare the deobfuscated code with the original (if available) to evaluate the effectiveness
of the deobfuscation tool.

~

Malware Classification and Attribution

Malware Classification and Attribution are two important aspects of cybersecurity that involve
identifying and understanding malicious software (malware) and determining its origin or the entity
responsible for creating it.

Malware Classification refers to the process of categorizing different types of malware based on their
characteristics, behavior, and functionality. There are various methods and techniques used to classify
malware, including static analysis, dynamic analysis, signature-based detection, behavior-based
detection, and machine learning-based approaches. These methods help security researchers and
analysts understand the nature of the malware, its potential impact on systems, and develop
appropriate countermeasures.

Malware can be classified into different categories such as viruses, worms, Trojans, ransomware,
spyware, adware, rootkits, and more. Each category has its own unique features and methods of
propagation, and understanding these classifications helps in devising effective defense strategies and
mitigating the risks associated with malware.

Malware Attribution, on the other hand, involves determining the origin or the individuals or groups
responsible for creating and distributing the malware. Attribution can be a challenging task as malware
creators often employ various techniques to hide their identities and obfuscate their activities.
However, attribution is crucial for identifying the motives behind an attack, understanding the threat
landscape, and potentially taking legal action against the perpetrators.

The process of malware attribution typically involves collecting and analyzing various pieces of
evidence such as the malware's code, infrastructure used for command and control (C&C), network
traffic, email headers, social engineering techniques, and even geopolitical factors. This evidence is
analyzed by cybersecurity experts, intelligence agencies, and law enforcement agencies to trace back
the origin of the malware and attribute it to specific individuals, criminal organizations, nation-states,
or hacking groups.

Malware classification and attribution are interconnected processes that complement each other. By
analyzing and classifying malware, security experts can gain insights into its behavior and
characteristics, which can aid in the attribution process. Conversely, identifying the source of malware
can help in understanding its classification, purpose, and potential impact.

Similarity Analysis
Similarity analysis involves comparing two or more malware samples to determine their similarity. This
can help identify whether different malware samples were likely developed by the same threat actor.

222

ThinkCyber | NX Malware Analysis

Binary and Structural Similarity

Binary similarity involves comparing the binary representations of two malware samples. This can be
done using techniques such as fuzzy hashing.

Structural similarity involves comparing the structures of two malware samples, such as their control
flow graphs.

Example of computing binary similarity in Python using the ssdeep library:

import ssdeep

def calculate_ssdeep_hash(filepath):
with open(filepath, 'rb') as file:
file_data = file.read()
hash_value = ssdeep.hash(file_data)
return hash_value

Provide the path to the malware file
malware_file_path = 'path/to/your/malware.file'

Calculate the SSDeep hash for the malware file
hash_result = calculate_ssdeep_hash(malware_file_path)

Print the resulting hash value
print("SSDeep Hash: {}".format(hash_result))

Practical Exercises
Exercise: Clustering

1. Collect a set of malware samples. You can use the VirusShare or VX-Underground datasets for
this purpose.

2. Extract features from each malware sample. These features could be byte histograms,
instruction frequencies, etc.

3. Use a clustering algorithm (such as K-Means) to group the malware samples based on the
extracted features. How well does the clustering algorithm group similar malware?

Exercise: Similarity Analysis
1. Select two malware samples from the same family and two from different families.

2. Compute the binary similarity between the samples using a fuzzy hashing technique.
3. Compare the similarity scores. Are the scores higher for samples from the same family?

223

ThinkCyber | NX Malware Analysis

Malware Family and Campaign Attribution
Malware Family Attribution
Malware family attribution involves associating a malware sample with a particular family of malware.

This is typically based on shared characteristics among the samples.

Signature-Based Attribution

One common approach is signature-based attribution. This involves creating unique signatures for
each malware family based on static characteristics and using these to identify family members.

Introduction to YARA

YARA is a powerful tool used by malware researchers, incident response teams, and forensic analysts
to identify and classify malware. Its name stands for "Yet Another Ridiculous Acronym," but there's
nothing ridiculous about its capabilities. At its core, YARA is a pattern-matching engine, allowing users
to create rules that can be used to identify and categorize different types of malware based on
distinctive characteristics.

YARA rules consist of a set of strings (or binary data) and a boolean expression (known as the condition)
which determine whether or not a particular file or process matches the rule. This makes YARA a
valuable tool in the realm of malware analysis, where it is often crucial to quickly and accurately
identify malicious software.

Writing Basic YARA Rules

A YARA rule consists of three main sections: rule identifiers, meta-information, and rule body. Here's a
simple example:

rule silent_banker : trojan
{
meta:
description = "Silent Banker Trojan"
author = "John Doe"
reference = "www.virusinfo.com/silentbanker"
date ="2023-05-16"

strings:

Sa ={6A 4068 0030 00 00 6A 14 8D 91}

Sb ="100032"

Sc = "This program cannot be run in DOS mode."
condition:

Sa or Sb or Sc

In this example, "silent_banker" is the rule identifier and "trojan" is the tag. The meta section provides
additional information about the rule. The strings section defines the patterns that YARA will look for.
The condition section specifies the logical conditions under which the rule will be triggered. In this
case, if any of the three defined strings are found, the rule will be triggered.

224

ThinkCyber | NX Malware Analysis

Advanced YARA Rule Features

YARA also includes advanced features that make it more powerful and flexible. For example, it supports
regular expressions, which allows for more complex pattern matching. It also has built-in functions for
analyzing specific types of data, such as Portable Executable (PE) files.

rule PE_File_Detection

{

meta:
description = "Detect PE Files"

author = "John Doe"
date = "2023-05-16"
condition:
uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550

In this example, YARA checks the first two bytes of the file for the "MZ" signature (Ox5A4D) that
identifies it as a DOS MZ executable, and then it checks for the "PE\O\0" sighature (0x00004550) at the
offset specified by the e_Ifanew field (at offset 0x3C in the DOS MZ header).

Exercise: Write a YARA rule to detect a file containing the string "malware_sample". The rule should
be tagged as "sample" and include the necessary meta-information.

Exercise: Modify the above rule to search for either "malware_sample" or "malware_test".

Exercise: Write a YARA rule that identifies a PE file that contains the string "malware_sample". Use the
PE module provided by YARA.

Hands-On Task
To solidify your understanding of YARA, download several malware samples from a reputable source
such as "theZoo" that provides live malware samples for educational purposes, available on GitHub.

Task: Create a directory and place the downloaded malware samples in it. For the purpose of this
exercise, let's assume this directory is named "malware_samples".

Task: Write a YARA rule to match the malware samples based on unique strings or byte sequences
that you identify. Remember to include relevant metadata. Save this rule as "malware_rule.yar".

For example, if you discover that a malware sample contains a unique string
"BadMalwareSignature123", your rule might look like this:

rule Bad_Malware_Signature : malware
{
meta:
description = "Detects the unique signature of a malware'
author = "Your Name"
reference = "theZoo malware samples"

date = "2023-05-16"
strings:

$s1 = "BadMalwareSignature123"
condition:

Ssl

225

ThinkCyber | NX Malware Analysis

Behavioral Attribution

Behavioral attribution involves observing the dynamic behavior of malware in a sandbox environment.
This can include network communications, file system interactions, registry modifications, etc.
Campaign Attribution

Campaign attribution involves linking individual malware samples to broader cyber threat campaigns.
This requires an understanding of the tactics, techniques, and procedures (TTPs) used by threat actors.

Infrastructure Analysis

Infrastructure analysis involves examining the command and control (C2) servers, domains, and IP
addresses associated with malware to link them to specific campaigns.

TTP Analysis

TTP analysis involves identifying the unique tactics, techniques, and procedures used by a threat actor,
which can be used to attribute malware samples to specific campaigns.

Practical Exercises
Exercise: Campaign Attribution

1. Choose a known cyber threat campaign and research its associated TTPs and infrastructure.
Collect malware samples that are suspected to be associated with this campaign.

3. Tryto attribute the malware samples to the chosen campaign using the TTPs and infrastructure
you researched. Tools like Maltego can be useful for infrastructure analysis.

N

Identifying and Understanding Malware Infrastructure

Malware infrastructure refers to the set of hardware, software, networks, and data that malware
utilizes to operate and propagate. It often includes command-and-control (C&C) servers, botnets,
exploit kits, distribution websites, and other tools that enable malware to invade, infect, and control
host systems. Understanding malware infrastructure is crucial for cybersecurity professionals, as it can
provide insights into how to detect, prevent, and mitigate threats.

Components of Malware Infrastructure

Command and Control Servers

C&C servers are centralized computers that control the operations of malware once it has infiltrated a
system. Malware communicates with the C&C server to receive instructions and to send back stolen
information.

Botnets

Botnets are networks of infected computers, or "bots", controlled by an attacker. They can be used for
various malicious purposes, including DDoS attacks, click fraud, and spreading malware.

226

ThinkCyber | NX Malware Analysis

Exploit Kits

Exploit kits are software systems designed to find vulnerabilities in systems and exploit them to
distribute malware.

Malware Distribution Websites

These are websites or domains used to host and distribute malware, often disguised as legitimate
software.

Identifying Malware Infrastructure

Effective identification of malware infrastructure involves recognizing the signs of infection and then
tracing the malware back to its source. Techniques include network analysis, code analysis, and threat
hunting.

Network Analysis

By analyzing network traffic, we can identify patterns consistent with malware activity. This may
include unusual levels of data transfer, strange IP connections, or connections at odd times.

Code Analysis

Examining the malware code can provide clues about its origin, purpose, and method of operation.
For example, we might find hard-coded IP addresses pointing to a C&C server.

Threat Hunting
Threat hunting is the proactive search for malware or vulnerabilities within a system. It often involves

looking for signs of compromise, such as changes in system behavior, and tracing these back to their
source.

Hands-on Example: Tracking a Botnet
We have discovered a host in our network sending out unusual amounts of traffic, suggesting it might
be part of a botnet.

Step 1: Capture Network Traffic. Using tools like Wireshark, capture and analyze the network traffic
from the suspect host.

Step 2: Identify C&C Communication. Look for patterns that suggest C&C communication, such as
regular beaconing to an external IP address.

Step 3: Isolate Malware. Use a sandbox environment to isolate the malware and prevent it from
causing further damage.

Step 4: Analyze the Malware. Use disassembly and debugging tools to analyze the malware's code.

Step 5: Identify the C&C Server. Look for hard-coded IP addresses or domain names that might point
to the C&C server.

227

ThinkCyber | NX Malware Analysis

Advanced Dynamic Malware Analysis

Advanced dynamic malware analysis involves more sophisticated and in-depth techniques for
analyzing and understanding the behavior, capabilities, and intentions of malware. It goes beyond
basic dynamic analysis and incorporates advanced methodologies and tools to gain a deeper
understanding of the malware's techniques and evasion mechanisms. Here are some key aspects of
advanced dynamic malware analysis:

1. Environment Emulation: Advanced dynamic analysis often involves emulating a complete
operating system or specific components to create an environment that closely mimics the
target system. This helps researchers observe malware behavior in a realistic setting and detect
evasion techniques that specifically target certain environments or security measures.

2. Code and Data Analysis: In addition to observing the runtime behavior of the malware,
advanced analysis techniques delve into code-level analysis to understand the inner workings
of the malware. This involves disassembling or decompiling the malware to analyze its logic,
data structures, encryption techniques, and any anti-analysis measures it employs.

3. Memory Analysis: Memory analysis plays a crucial role in advanced malware analysis. It
involves inspecting the malware's presence in memory, analyzing process memory dumps, and
examining runtime artifacts to identify its techniques, such as process injection, hooking, or
code manipulation. Memory forensics tools are often used to extract valuable information
from memory snapshots.

4. Anti-Analysis Evasion: Malware creators often employ various techniques to evade detection
and analysis. Advanced dynamic analysis focuses on identifying and bypassing these anti-
analysis measures, such as unpacking, obfuscation, encryption, or behavior-based detection
evasion. This involves using specialized tools and techniques to reveal the true behavior of the
malware.

5. Network Traffic Analysis: Analyzing network traffic generated by malware is crucial in
understanding its communication patterns, command and control infrastructure, and
potential data exfiltration. Advanced dynamic analysis involves capturing and analyzing
network packets to identify malicious activities and gather intelligence about the malware's
network behavior.

6. Automated Behavioral Analysis: Advanced dynamic analysis leverages machine learning and
artificial intelligence techniques to automate the analysis process. Behavioral analysis models
can be trained to detect and classify malware based on their observed behaviors, reducing the
manual effort required for analysis and enabling faster identification and response to new
threats.

7. Malware Family and Attribution: Advanced dynamic malware analysis aims to identify
similarities and patterns among different malware samples to classify them into malware
families or attribute them to specific threat actors. This involves correlating analysis results,
identifying common code fragments or behaviors, and leveraging threat intelligence sources.

Advanced dynamic malware analysis requires a deep understanding of malware analysis techniques,
reverse engineering, computer architecture, and security principles. It often involves using a
combination of commercial and open-source tools, custom scripts, and expertise in various domains
to extract valuable insights and intelligence from the analyzed malware.

228

ThinkCyber | NX Malware Analysis

Advanced Behavioral Analysis

Anti-Analysis Techniques and Countermeasures

In the field of cybersecurity, cybercriminals and malware developers consistently innovate to evade
detection and analysis. As a result, advanced behavioral analysis of malware has become increasingly
complex. Examples and exercises are provided to ensure a comprehensive understanding of the topic.

Anti-Analysis Techniques
Anti-analysis techniques are tactics used by malware to avoid detection and analysis. These techniques
can generally be categorized into three main groups: anti-debugging, anti-VM, and anti-disassembly.

Anti-Debugging

Anti-debugging techniques aim to disrupt or prevent the operation of debugging tools, which analysts
use to understand malware's inner workings.

Example: One common anti-debugging technique involves using the "IsDebuggerPresent" function in
Windows. If a debugger is present, this function returns a non-zero value, allowing the malware to
change its behavior or halt execution.

Anti-VM

Anti-VM techniques help malware detect when it is running inside a virtual machine (VM). Since
analysts often use VMs for safe malware analysis, this can prevent them from studying the malware in
a controlled environment.

Example: A common anti-VM technique involves checking the MAC address of the network adapter.
VMware, for instance, uses MAC addresses that start with "00:0C:29", "00:1C:14", or "00:50:56". If

such an address is detected, the malware may choose not to run or alter its behavior.

1. Inthe Device Manager, find Network Adapters and click on the arrow to expand the list.

& Device Manager - [m] x

File Action View Help
e @B Bm B EXE

~ & DESKTOP-ODG1403 ~

iy Audio inputs and outputs

B Batteries

£ Bluetooth

[Computer

- Disk drives

[Display adapters

== DVD/CD-ROM drives

@ Human Interface Devices

=z IDE ATA/ATAPI controllers

[Keyboards

w Mice and other pointing devices

[Monitors

v [Network adapters

Ij Bluetooth Device (Personal Area Network)
Ij Bluetooth Device (RFCOMM Protocol TDI)
Ij] Intel(R) 82574 Gigabit Network Connection
I WAN Miniport (IKEv2)

2. Right-click on your network adapter (the one for which you want to change the MAC address)
and click on Properties.

229

ThinkCyber | NX Malware Analysis

3. Click on the Advanced tab.

4. Inthe Property box, scroll down and select Network Address or Locally Administered Address
(the name might vary).

File Action View Help

¢ ep | 7 2| H 55| T IntelR) 82574L Gigabit Network Connection Properties X
]

v oy DESKTOP-ODE1403 Events Resources Power Management ~
J_<| Audio inputs and outpy General Advanced Driver Details
Q Batteries
9 Bluetoaoth The following properties are available for this network adapter. Click
= the property you want to change on the left, and then select its value

omputer on the right.
s Disk drives B vl
3 Display adapters roperty aue
DVD/CD-ROM drives ;;Idapt(i:va Intler-Frame Spacing - i+ 001122334455
- i low Cortrol
4l Human Interface Devic Gigabit Master Slave Mode ¢ Not Present
== |IDE ATA/ATAPI controll Intemupt Moderation
Kevboard Intemupt Moderation Rate
== heyboards IPv4 Checksum Offload
@ Mice and other pointin Jumbo Packet
. Large Send Offload V2 (IPv4)
B Manitors Large Send Offisad V2 (Pv5
~ @ Network adapters Locally Administered Address
[Bluetooth Device (P II\-"!OQ Link Sl*zatebEvaRSS a
(& Bluetooth Device (Rl AR e e
= Packet Priority & VLAN
@ Intel(R) 82574L Giga Receive Buffers i

Ij WAN Miniport (IKE:
@ WAN Miniport (IP)
@ WAMN Miniport (IPv
@ WAN Miniport (L2T|
@ WAN Miniport (Net|
@ WAN Miniport (PPP
8 WAN Miniport (PPT| Cancel
@ WAN Miniport (S5TF]

== Drint rnenes e

5. Ifthevalueis set to "Not Present," that means your network adapter is using the MAC address
hardcoded into its circuitry. To set your own, you need to select the Value radio button on the
right.

6. Enter the new MAC address in the Value box. MAC addresses are 12-digit hexadecimal
numbers (6 octets). So, it should look like 001122334455 or 00-11-22-33-44-55.

7. Click OK to apply the changes and restart.

B C:\Windows\system32icmd.exe — [m] %

After completing these steps, your network adapter should be using the new MAC address that you've
entered. If you face any issues, you might need to disable and re-enable the network adapter or restart
your computer.

230

ThinkCyber | NX Malware Analysis

Anti-Disassembly

Anti-disassembly techniques aim to disrupt disassembly tools, which translate machine code back into
a more human-readable form.

Example: One such technique is inserting bogus or misleading code to confuse disassemblers. This
could involve using instructions that are valid but unlikely in normal programming, causing
disassemblers to misinterpret subsequent code.

Countermeasures
To effectively combat these anti-analysis techniques, various countermeasures can be deployed.

Debugger Detection Mitigation

To thwart anti-debugging techniques, researchers can use stealth debugging techniques or modify the
"IsDebuggerPresent" function's return value using a debugger.

Exercise: Using a debugger like OllyDbg, practice modifying the return value of "IsDebuggerPresent".
Load a sample program that uses this function, set a breakpoint on the function call, and alter the
return value when it hits the breakpoint.

Anti-VM Mitigation

To counter anti-VM techniques, analysts can use VMs that allow hardware and MAC address spoofing,
or use bare metal machines for analysis.

Exercise: Configure a VM with a custom MAC address outside the ranges typically used by VM software.
Use a tool like Wireshark to monitor network traffic and confirm the new MAC address is being used.

Virtual Machine Settings X

Hardware Options
Device Summary Beviceldtatus)
5] Memory 4GB Connected
I Frrocessors 4 Connect At nower on
[\ Hard Disk (NVMe) 60 GB Network Adapter Advanced Settings X
(=) CD/DVD (SATA) using file C:\Users| |
o[y — NAT Incoming Transfer Shysical network
[usB controller Present Bandwidth: Unlimited ~ ection state
c}? Sound Card Auto detect —
[Printer Present Kbps: i ldress
- 1 with the host

[lpisplay Auto detect Packet Loss (%): 0.0 =

Latency (ms): o =

Qutgoing Transfer

Bandwidth: Unlimited ~

Kbps: LAN Segments... Advanced...

Packet Loss (%): 0.0

ae] [q]e] 4r

Latency (ms): a

MAC Address

00:0C:29:77:23:1F Generate

Cancel Help

Add... Remove

231

ThinkCyber | NX Malware Analysis

Anti-Disassembly Mitigation

Against anti-disassembly techniques, manual code analysis is often effective. Additionally, some
advanced disassemblers can handle such evasion techniques.

Exercise: Use a disassembler like IDA Pro to analyze a piece of malware that uses anti-disassembly
techniques. Practice manual code analysis to understand how the malware operates despite the
obfuscation.

Timeline and Correlation Analysis

Advanced behavioral analysis often requires a deep understanding of the sequence of events that
occur during a cyber incident. Timeline and correlation analysis provide the means to explore these
sequences, helping identify patterns and relationships between different activities.

Timeline Analysis

Timeline analysis is the process of constructing and reviewing the sequence of events. It can help to
identify suspicious activities, understand the cause-and-effect relationship between events, and
investigate incidents more effectively.

Understanding Event Logs

Key to timeline analysis is the understanding and utilization of event logs, which record activities within
a system.

Example: In a Windows system, security event logs can contain records of activities such as user logons,
system startups, or changes to security policies. By analyzing these logs, analysts can trace back the
activities leading up to an incident.

Tools for Timeline Analysis

Several tools can assist with timeline analysis. One such tool is "log2timeline," a command line tool
designed to extract timestamps from various files and present them in a unified timeline format.

Exercise: Using a sample event log file, practice extracting a timeline of events with log2timeline. Try
to identify any anomalous events or sequences.
Correlation Analysis

Correlation analysis is about finding relationships between different activities. By correlating events,
analysts can identify patterns that may indicate a coordinated attack.

Correlating Data Sources
Correlation analysis often involves data from multiple sources.

Example: Consider correlating firewall logs with system event logs. A sudden surge in firewall deny

logs, coupled with an unusual system event (like a user logon at an odd hour), could indicate a breach
attempt.

232

ThinkCyber | NX Malware Analysis

Tools for Correlation Analysis

Tools like Security Information and Event Management (SIEM) systems can help automate correlation
analysis. SIEM systems collect and analyze log data from various sources, providing real-time analysis
and correlation of security alerts.

Exercise: With access to multiple log files (firewall, system events, etc.), practice using a SIEM system
like Splunk or ELK Stack to correlate events. Identify patterns and potential security incidents.

Malware Persistence Mechanisms

Persistence mechanisms are techniques used by malware to maintain its presence and operations on
an infected system, even through reboots or attempts at removal. Understanding these mechanisms
is a crucial part of advanced behavioral analysis.

Common Persistence Mechanisms
There are several common techniques that malware uses to maintain persistence on a system.

Registry Keys
Malware often alters Windows registry keys to automatically start each time the system boots.

Example: The HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run registry key
is one common location where malware may add entries to execute every time the user logs in.

Run and RunOnce Keys:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce

O O O O

RunServices and RunServicesOnce Keys:

o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices
o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServicesOnce

Start Page Key:
o HKCU\Software\Microsoft\Internet Explorer\Main\Start Page
Policies\Explorer\Run Key:

o HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

Winlogon Key:

o HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

233

ThinkCyber | NX Malware Analysis

Shell Service Object Delay Load (SSODL) Key:

o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

Browser Helper Objects (BHO) Key:

o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects
o SharedTaskScheduler Key:

o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler

Services Key:

o HKLM\SYSTEM\CurrentControlSet\Services
o Applnit_DLLs Key:

o HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\Applnit_DLLs
o KnownDLLs Key:

o HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs
o SafeBoot Key:

o HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot

Scheduled Tasks

Malware can create or modify scheduled tasks to execute at regular intervals, ensuring it remains
active on the system.

Example: A piece of malware may create a task scheduled to run every hour, executing a particular file
or command.

lzl Task Scheduler = o X

File Action View Help

o= 217 HE

(® Task Scheduler (Local) Nama Status | Triggers Actions
v L@ Task Scheduler Libra
2 ASUS o 5 ASUSUpdate.. Ready Multiple triggers defined ASUS 2
1 Intel (f ASUSUpdate.. Ready At 2:42 PM every day - After triggered, repeat every 1 hour f j Create Basic Task...
1 McAfeeTsk @& runMe Ready At 12:39 PM every day L Create Task..
1 Microsoft Import Task
= @ Display All Running Tasks
General Triggers L@gggj Conditions Settings History (disabled) &] Enable All Tasks History
When you create a task, you must specify the action that will occur when your ti | New Folder..
actions, open the task property pages using the Properties command. S Dilete Eoider
Action Details View »
Start a program C\tmp\spoolsv.exe G Refresh
E Help
Selected Item .
P Run
I —
- Cmd

234

ThinkCyber | NX Malware Analysis

Service Hijacking
Service hijacking involves malware replacing or modifying system service executables, causing the
malware to run each time the service starts.

Example: A malware may replace the executable for a commonly used service, such as the print
spooler, with its own executable.

RootKits

A rootkit is a type of malware designed to give unauthorized users root or administrative level control
over a computer system without being detected. Rootkits can hide themselves and other processes or
files, making their detection and removal more difficult. They typically infect the operating system,
allowing the attacker to manipulate the system, access and steal information, execute files, modify
system configurations, and hide activities.

Bootkits

A bootkit is a type of rootkit that infects the Master Boot Record (MBR), Volume Boot Record (VBR),
or Boot Configuration Data (BCD) of a computer. This allows the bootkit to load into memory before
the operating system and thus gain full control over the system, bypassing any system defenses or
antivirus software. Bootkits can be particularly difficult to detect and remove, as they can actively hide
themselves and other malware from the operating system.

Detecting Persistence Mechanisms
Identifying persistence mechanisms often involves looking for anomalies in system configurations and
behavior.

Exercise: Using a tool like Sysinternals Autoruns, examine a Windows system for unusual entries in
startup locations. Look for unfamiliar programs, programs with no publisher, or programs that run from
unusual locations.

Removing Persistence Mechanisms
Once a persistence mechanism has been identified, the next step is to remove it.

Exercise: In a safe environment, infect a virtual machine with a piece of malware. Practice identifying
and removing the malware's persistence mechanisms. This may involve editing the registry, changing
scheduled tasks, or restoring original service executables.

Advanced Persistence Mechanisms
Some malware uses more sophisticated techniques for persistence, such as injecting code into running
processes or exploiting system vulnerabilities.

Exercise: Use a tool like Process Explorer to examine running processes on a system. Look for processes
with unusual CPU or memory usage, processes running from unusual locations, or processes with
unusual parent-child relationships.

Understanding and dealing with malware persistence mechanisms is a critical aspect of advanced

behavioral analysis. By learning to identify and remove these mechanisms, you can significantly
improve your ability to respond to and mitigate malware infections.

235

ThinkCyber | NX Malware Analysis

OllyDbg

Introduction to OllyDbg

OllyDbg is a dynamic binary instrumentation (DBI) tool for Microsoft Windows applications. It's
particularly useful for software debugging. It provides a plethora of functionality including complex
breakpoints, memory and stack manipulation, a built-in assembler, and even a plugin architecture for
extendability.

ak OllyDbg - Lab01-01.exe - [CPU - main thread, module ntdll] - O X
g File View Debug Plugins Options Window Help - 8 %
Blx| wn| wij+] $1 A) L]E]
TTECOLOL B944zd BL QU DWORD FTR 223 (EoPTCT EAn Regicters (FFUI <
A |Begister
PPEZECEL| £4:A1 19REEEE |MOU EAR,DWORD FTR F — -
TTERRRRE| GRAB'nABIB008" |Tioh ERiDUGRD FTR DoiFemdeindl [e R A PR e NS e A olimos
PPEZGCED| SaB4zd OU DUORD PTR 55:[ESPI, EAX e
PPEZECTE| Créd4z4 B4 9OOEEIHOU OWORD PTR SS:[ESP+41,E Ere
PPEZACTE| Crd424 @2 @EBEEIMOU DWORD PTR 55: [ESP+81,0 Eor -
PPEZECER| Cradz4 1B BOOSE MO DWORD PTR 55:[ESP+181,B EE
PrEZBCEE| B4 PL EeT
FPEZECES| ER TEOER1EE CALL ntdll.Rt |RaiseExcept ion Eoil
FPEZOCEE| SE@4Z4 A0 ER, DWORD FTR S5:(ESF]
FPEZBCO1| SEEE MOl ESF, EEP EIF FFEZBCAT ntdll. 7PEZECAT
e s e e 2P C @ ES BEZE SEbit BIFFFFFFFF)
ZrEsacoc| Sfiaaze poeacace| LEA EgP,DUOKD PTR S5: (EP1 2 A ES g Shls WiaddaAns)
FPEZECOC| SDe424 BR LER ESF, DWORD 8% B2 BBeE 2enit BIEFFFFEFE)
CIESCChn Basp fdsoEce? ol CHP DWARD. PIR D& [ooECEIRAT, 8 DB FE s 2k & 433
mmzdvm BE JE SHORT ntdll.FrESBCET $ 8 &S 63t 2ooiv BeFFEFFFFF)
TrECUCHY| BBED S48TECTT | MOU ECH,DWORD PTR DS:[7rECSTSH] o ba
Z7EZOCHE| FPAS DRSIECP? | CHLL DWDRO PTR DS:(77ECO108] ntdll.Rt LDebugPrint Times 0 8 LastErr ERROR_SUCCESS [GR@EREEE)
FTEZECET| 234424 B4 HOU DUORD PTR SS: (ESPd1, ER EFL BRBEEZ4E (HO,ME,E,EE, NS, PE, GE, LE)
FPEZOCEE| S9BC24 BE MOU DWORD PTR 55: [ESP+E1, EEH 578 empty 8.8
7TEZGCEF | ~ES SEEDFFFE JAF ntdll. PPE145FT 311 e Ala
FPEZBCCA| SDA424 BRREEEEE| LER ESP,OWORD FTR. 55: [ESF] ST3 Sy Ea
FPEZECLE|~EB B3 JHP_SHORT ntdll.KiFastSystenCall "
|=elrnininl r‘r‘ 10T £T3 empty 8.a
7 e
- enpty
Bt Erinsa) 1. 77E2ACET S T b
ST? empty 8.0
. ce o o
Address [Hex dum -~ ~
BD3B3006/ UG BG 0B 0| Ot EBLSERES
Chincans|oe Ba oo oo e | ee1sFFFs| coeoacas
BR4BIB1| £6 £5 72 22| & | eeisrrre| asoanns
483015| ZE 64 60 &C| BE
£E &E TZ £E|&E
ZE &4 EC EC|BE
5E &5 TE £E|BE
EC 2R BB 88| 2
s
69 G6E &4 6F |77 VY v
Single step event at ntdll. 7FE20CAT - uze Shift+F 7/F8/F3 to pasz exception to program | | Pauszed

The program enables users to analyze binaries to understand their operation, detect problems, or
uncover potential vulnerabilities in the code. This makes it an essential tool for software developers,
especially those working in security.

What is OllyDbg?
OllyDbg is an assembly level analyzing debugger for Microsoft Windows. Emphasis on binary code
analysis makes it particularly useful in cases where the source is unavailable. It predicts the contents

of registers, recognizes procedures, API calls, switches, tables, constants, and strings, and locates
routines from object files and libraries.

Installation and Setup Process
At the time of this writing, OllyDbg can be downloaded directly from its official website. The tool is
lightweight and doesn't require installation - it runs directly after extracting the contents of the

downloaded file. Let's go through the detailed process:

1. Downloading OllyDbg:
Visit the OllyDbg official website. Download the latest version of OllyDbg.

2. Running OllyDbg:
After extracting the ZIP file, open the extracted folder and run the 'OllyDbg.exe' file.

236

ThinkCyber | NX Malware Analysis

User Interface and Basic Functionality

The user interface of OllyDbg might seem complex at first, but it is very well organized and once you
get accustomed to it, navigating through it becomes a breeze.

Main Window

When you first open OllyDbg, you'll see the main window which is divided into several sections (or
panes).

e CPU Window: This is perhaps the most important window. It displays the disassembled code of
the program being debugged and also shows the current EIP (Extended Instruction Pointer). It's
divided into several sub-windows:

= Disassembly

= Dump
= Stack
= Registers
3k OllyDbg - putty.exe - [CPU - main thread, module ntdll] - [m} *
g File View Debug Plugins Options Window Help - &8 X
Bledx] »lu] v+ 30 o % u/E|s]1|wn]c]/]k[BR]-]s] EH?]
=73 O T SHOFT ntdll, TTECOCET,
» | Begisters [FPUI 3 <
TrEZGCHD| SEAD S487ECTT | MOU ECH,DWORD TR DS:LrrECETE4] -
CrEcacor| FEMs DeSiEr? | CALL DWBRD PTR DS: [77ECH10A) ntdlL.Rt IDebugPrintTines i Eiaaday Eoa e E el oD
FPEZOCET| §94424 B4 HOU DHORD PTR SS:[ESP+41,EAX 2 e
FPEZGCEE| 295024 88 MU DWORD PTR S5:[ESP+21)EEH EDagonshada
PPEZECEF | ~ES S830FFFF JHF ntdl L. PPE143FC =
PPEZECC4| SDR424 BBPBEEES|LER ESP,DWORD FTR 55:[ESP] ey
FPEZECCE|~EB 83 JHF_SHORT ntdll.KiFastSystemdsll et
PPEZBCLD| CC HTE
rrEsacce| £ T EIF 7FEZBCAT ntdll.7rEZBCAT
Ce B, Co g5 ome soie accrrerrer)
FAEZBENZ [YORS R A @ 55 002E 32bir @[FFFFFFFF)
PYEZECD4| SDA424 LER ESF,DWORD FTR 55:[ESP] 30 5 EE R)
£7EZECOE VEB O pilsHOR Ined MRk iRasEs st enCallpeE S B FS BOSS 32hit SFAGEEIFFF)
anE2ec0D e T 18 65 28 3Ebit OUFFFFFRRF)
el R HilE] 0@ LastErr ERROR_INSUFFICTENT_BUFFER (BABBAETAI
FYEZECEL| SDR424 LEA ESP,DWORD FTR S5:[ESFI EFL BBBBBZ4E (MO, NE,E, BE, NS, PE, GE, LE]
PYEZECES| SDA424 BBBBEBESE|LER ESF,DWORD FTR 55:[ESF] v | 310 cmpty 8.0
TR = ST1 empty 8.8
i 5T2 empty B.8
FFEZBCET=ntdl L. FPEZECET 2 S
ST4 empty 8.8
| 25 1 SFFF o ENEEEEEEE o
—‘—M Hew_dury * PBR1SFFF4| BEREEEGE ol
B4 TEERE | B B9 BB BB EE A9 45
£047EE05| B0 BR GE 66| B0 0O 60 AR Hadddel
BE47ER1E|ED 30 45 BB| 25 99 45
BE47ERIS| A A9 45 BE|BE 09 BB
B4 7ERZE| B B9 B8 BB| 93 3E 45
BE47ERZS | B 00 BB BE| 05 05 B8
BE47ERSE| B 09 BB BE| 05 09 BE
BE47ERSS | BE 09 BB BE| BB 09 6E
BE47ER4E| B2 BT 47 BB| &3 BY 47
BO47ER4Z| 63 BE 47 80| 12 B 47
BE47ERSE| 65 BS 47 BB| G0 09 B8
BE47ERSS| B B9 BB BE| 05 09 R
0047EREE| B0 00 B 80|00 00 88
BE47ERES| BE 0O BB BE| 05 09 BE
BE47EETE| B 09 BB BE| 05 09 BE
v 83 BR
330 83 BE w w
Single step event at ntdl. 77E20CAY - use Shift+F7/F8/F3 to pass exception to program | | Pauszed

e Executable Modules Window: In OllyDbg, this window shows all the modules (essentially
executable files and dynamic link libraries) that are currently loaded into the process's address
space. Each module corresponds to a particular file on disk. The window shows detailed
information about each module such as its base address, size, entry point, etc.

237

ThinkCyber | NX Malware Analysis

& OllyDbg - putty.exe - [Executable modules] — O X
ﬂ File View Debug Plugins Options Window Help - 8 x
(eledx] »[u s+ 54 9 =4 u)e|m|z|w|r[c| kB[R] 5] 2]
Base Size Entry Name File version Eath ~
00400000 | 000284000 |004550F0 |putty Release 0.€7 C:\Users\Malware'Downloads\ollyfiles\putty.exe
€35E0000 | 000€C000 | €35FED40 |[WINSPOOL (10.0.16233.15 (] C:\Windows\S¥YSTEM3IZ\WINSPOOL.DRV
€9€50000| 00211000 | €3€D3080 |COMCTL3Z |€.10 (WinBuild.]C:\Windows\WinSx5\x3€_microsoft.windows.common-controls_£595b€4144ccfldf €.0.
€CT7CO0000 | 00030000 | 6C7C4C40 | IPHLPAPT (10.0.16255.15 (§C:\Windows\SYSTEM3Z2\IFHLPAPFI.DLL
€CSC0000| 00023000 | €CSC24D0 (WINMMBRS (10.0. -15 (§C:\Windows\SYSTEM3Z\WINMMBASE .d11
€CSF0000 | 00024000 | 6C3F4CED | WINMM 10.0. 215 (§C:\WindowshSYSTEMIZ\WINMM.d11
00015000 |745055E0 | beorypt 10.0. -15 (YC:\Windows\S¥STEM3Z\bcrypt.dll
0000R000 | 747C2A10 |CRYPTBAS |10.0. -15 (JC:\Windows\System3Z\CRYPFTBASE .d1l
747DCS80 |S5spiCli |10.0. -98 (YC:\Windows\System32Z\S5spiCli.dll
00045 742094R0 |SHLWAPI |10.0. -15 (JC:\Windows\System3Z\SHLWAPI 411
74840000 | 0007C000 (74855620 mswep_wi|10.0. -15 (1C:\Windows'\System3Z\msvcp_win.dll
748C0000 | 0000EQOQ | 742C2F20 (kernel_a|(l0.0. -15 (JC:\WindowshSystem3Z\kernel.appcore.dll
T4EF0000 | 001D7000 | 74FD2440 (EERNELBA (10.0. -15 (§C:\Windows\System3Z\EERNELBASE dll
TS0E0000 | 005CE000 | 752C39E0 (windows_ (10.0.1625959_15 (§C:-\Windows\System3Z\windows .storage .dll
75€B0000 | 00043000 | 75€BRA0S0 | sechost [10.0.18293.15 (JC:\Windows\System3Z\sechost.dll
75700000 | 00014000 |75707550 |profapi [10.0.1€29%.15 (|C:\Windows\System3Z\profapi.dll
75720000 | 00025000 |757245C0 | IMM3Z 10.0.1€233.15 (§C:\Windows\System3Z\IMM3Z . dll v
Single step event at ntdll. 77E 20CAY - uze Shift+F7/F8/F9 to pass exception to program | | Pauzed

e Memory Map Window: The memory map in OllyDbg shows how the virtual address space of the
debugged process is laid out. It provides information about which regions of memory are currently
allocated, what permissions are set on those regions (e.g., whether they are readable, writable,
executable), what type of memory it is (e.g., heap, stack, image), and more.

3 OllyDbg - putty.exe - [Memory map] — O =
ﬂ File View Debug Plugins Options Window Help - & X
(B x] »w[n] =+ 3[4 A = L[E[m[T|w H]c]s|K[B[R[..[|5]
Rddress [Size Owner Section [Contains Type |Rccess |(Initial |Mapped as G
00011000 (00001000 Priv|RW BW
00020000 (00010000 Map |BW BW
00040000 (00015000 Map |R R
[a[a]u}-1-1 0000BOOD Priv|BW CGualBW
00198 0000z000 Priv|BW CGualBW
0013C 00004000 stack of majPriv|RW GuajRW
001R0 00004000 Map |R R
001B0 0000z000 Map |R R
001co 00001000 Priv|RW BW
001D0000 (00002000 Map |R R
00200000 (00002000 Priv|RW BW
00001000 data block {Priv|BW BW
003Fe000 (00004000 Priv|RW BW
OO03FAOO00 (00003000 data block {Priv|BW BW
003FDO00 (00001000 data block {Priv|BW BW
00400000 (00001000 |putty PE header Imag|R BHE
00401000 (0005C000 |putty .text code Imag|R BWE
00450000 (0001EQQD |putty -rdata imports Imag|R BWE
0047B0O00 (00006000 |putty .data data Imag|R RWE
00481000 | 00003000 |putty .ESIC resources Imag|R RHE
024350000 (00001000 Priv|RW RW hd
Single step event at ntdll. 7FE20CAT - use Shift+F7/F8/F3 to pass exception to program | | Pauzed

e Handles: In OllyDbg, the handles window shows the handles to kernel objects that the debugged
process currently has open. This includes handles to files, registry keys, synchronization objects,
and others. Each handle has a type and an ID associated with it.

238

ThinkCyber | NX Malware Analysis

& OllyDbg - putty.exe - [Handles] — O X
ﬂ File View Debug Plugins Options Window Help - 5 X
‘BlWx] »[u] i+ 8517 4]] 1] E/mT/w]n|c|/]K[B[R]-

Handle |Type Refs |Rocess [T |Info Name ol
00000054 |ALPC Port €5537)|001F0001

00000134 |Desktop 257114 000FO1FF \Default

00000034 |Directory 2ZZZI400000003 “EnownDlls

0000004C |Directory 4247700000003 “EnownDlls3Z

0000007C |Directory 4247700000003 “EnownDlls3Z

00000110 |Directory S525%(0000000F “Sessionsl\BaseNamedObjects

00000008 |Event €5537|001F0003

00000038 |Event €5533|001F0003

0000003C |Event €553€|001F0003

00000050 |Event €5537|001F0003

00000080 |Event €5533|001F0003

00000084 |Event €5535 | 00LFO003

00000008 |Event €5537|001F0003 v
Frogram entry paint | | FPaused

e Breakpoints Window: This shows the currently set breakpoints.

3 OllyDbg - putty.exe - [Breakpaints] -] *
ﬂ File View Debug Plugins Options Window Help - & X
(Blx| win| w4 A % L]E[M[T|W H|[c|[/|K|B|R|..|S]
Rddress [Module |Active Disassembly ~
00417053 |putty Rlways PUSH putty.004E7CTC
0041CBEE |putty Rlways PUSH putty.004E7CTC

w
Program entry point | | Paused

The arrangement of these sections can be customized to suit your preference by dragging and dropping
windows around.

239

ThinkCyber | NX Malware Analysis

Basic Functionality

1. Loading a program: To begin debugging a program, you need to load it into OllyDbg. This is
done by navigating to File > Open, and then selecting the program executable.
2. Running and Pausing: Once a program is loaded, you can start its execution with the Debug >
Run command or by pressing F9. To pause execution, use Debug > Pause or F12.
3. Stepping through code: To execute code one instruction at a time, you can use Debug > Step
into or F7. To execute a complete function call as one instruction (i.e., not step into it), use
Debug > Step over or F8.
4. Setting breakpoints: Breakpoints are set by clicking on the grey bar to the left of the
disassembly code, or by right-clicking on a line of code and selecting Toggle breakpoint or by
pressing F2. A red highlight indicates a breakpoint.
k& OllyDbg - Lab01-01.exe - [CPU - main thread, madule ntdll] = O X
g File View Debug Plugins Options Window Help - 8 x
Bl x| win| wis $1] +f L[E[M[T[w|H[c|/|K[B|R|..[S] iE[H]?]
FrEZBACED 89‘.1'424 ac MOU DWORD PTR SS:EESI:-'+C].EF!>< A |Registers (FFU) <
TESRRE| BARaARTonne. |Mou ERG.DWORD P1R DSiFEAs1nd1 ERt B04B1520 Labol—21. Todu LeEn truFoint>
FTEZBCAD| S9@424 MOL DWORD PTR S55: [ESFI1,EAR ED:
FYEZBACYE| Cr4424 B4 @EE@E0 MO DMORD PTR SS5: [ESF+4]1,8 EE
FYEZBACYE| Cr4424 B2 @@@@a MOU DMORD PTR SS5: [ESF+21,8 ESF FF!
FPEZHCEE| CP4424 10 @080E MOU DWORD PTR SS: [ESP+16]1,8 EEF
FPEZACEE| B4 PUSH ESP)) ESr

EZ Fz29z@10@ CALL ntdll.RtlRaiseExncept ion EDI
FFEZHCZE| SBEdE4 MOL ERX, OWORD FTR 55:[CESF]
FrEZ@C MOoU ESP,EEP EIF FFEZ2BCAT ntdll.FFEZBCAT
e e s C @ ES BEZE 3Zbit BIFFFFFFFE)
FTEZOCSS| SDR424 BRPARERA| LEA ESP,OUORD PTR SS:[ESPI 05 5 SE e e
FPEZBCIC| 205424 @A LEA ESP,DWORD PTR S5:[ESF] Z 5% BosE S2bit GFFFFFFFF)
CTECACHE| §330_g4SVECTY @1 CHP DWORD PTR DS:[7rECEra41,@ %8 FS @A 37bit SEEEEALFFF)

~74 BE JE SHORT ntdll.7rE2BCET TH GBS AO%E Sobit BiFFFFEFFE)
FrEZECAZ| 8EA0 242FECTYY MOU ECH,OWORD PTR DS: [FFECE7E41] . . i)
?;E2BESF FF15 DBIIECYY SﬁlﬁLEgﬂDRD FTR DS:[¥YEC210@] ntdl l.Rt lDebugPrintTimes o LastErr ERROR_SUCCESS (REARBAGE)
FYEZEACET| 294424 B4 MOU DWORD PTR SS:CESP+41, ERX EFL @@@@@z4& (HO.MNE,E,BE,HS,FE, GE,LE]
FYEZECEE| Z95C24 @2 MOU DWORD PTR S5:[CESF+31, EEX STE empty 8.0
FTEZBCEF|~E2 3830FFFF JHMP ntdll.FFE143FC ST1 empty @.@
77EZ0CC4| SDA424 BREREEEA| LER ESP,DWORD PTR. SS:[ESPI 312 empty .0
FYEZEACCE|(vEE B3 JMP SHORT ntdll.KiFastSustemCall w572 erpty 8.6
M_ LL T b1 5T4 empty @.8
FrE39FBE=ntdl l.Rt LRaiseExcept ion ST5 empty 6.8

STE empty 8.8
ST? ermpty 8.8 _ _ _

R Hew dump A [Gororrra| ooonoon CJ

HE BB BE B@| B

10s002|92 20 29 90 Ol G313FERE | Baosoon

4 2E &4 &C &C| BE
&B &5 Y2 EE| &E
2E &4 EC EC| BE
2E 65 78 &5|BE
SC ZA ©@ 9@ ZE
2E BB B3 @@ 42
R v

Single step event at ntdll. 77E 20CA7 - use Shift+F7/F8/F9 to pass exception ko program | | Paused

5. Viewing Registers and Memory: The current state of the CPU's registers is displayed in the
Registers sub-window in the CPU window. The Stack sub-window shows the current stack
frame, and the Dump sub-window can be used to examine memory.

6. Manipulating Data: OllyDbg allows you to modify register values, memory data, and even the

disassembled binary code itself. Right-click on the data you wish to modify and select Edit.

These are just the basic functionalities of OllyDbg. The tool provides much more advanced features
like conditional breakpoints, tracing, and a powerful plugin system to extend its capabilities.

240

ThinkCyber | NX Malware Analysis

Dynamic Analysis with OllyDbg

Malware analysis is a critical part of maintaining cybersecurity. Dynamic analysis provides the ability
to observe the malware's activities in real-time, helping us understand its behavior and potential
impact on the system.

Exercise 1: Simple Malware Debugging

1. Load the Malware: File > Open, then choose your malware sample.

2. Observe the Main CPU Window: Pay attention to the sequence of the operations being
performed by the malware. The malware's actions are crucial to understanding its nature.

3. Set a Breakpoint: If you see any suspicious API calls (like CreateFile, WriteFile,
InternetOpenUrl, etc.), set breakpoints on these lines (F2 or Toggle breakpoint).

4. Run the Malware: Execute with Debug > Run or F9. The debugger will stop at the first
breakpoint.

5. Analyze: Step through the instructions (F7 or F8), monitor the changes in registers and

memory, and note any suspicious activities.

Attaching to a Running Process

Sometimes you may need to analyze a process that is already running, such as a service or a malware
sample that has infected a system. In this case, you can attach OllyDbg to the running process.
Exercise 2: Attaching to a Running Process

1. Start a Process: For this exercise, start a simple process like Notepad.

2. Attach OllyDbg: In OllyDbg, go to File > Attach, and a list of currently running processes will
appear. Select the process you want to attach to, in this case, 'notepad.exe’, then click 'Attach’.

3. Debug as Normal: Once OllyDbg is attached, you can debug the process as if you had started
it from OllyDbg.

Stepping through Instructions and Breakpoints

Being able to step through code is essential in dynamic analysis. By doing so, you can follow the
program's execution flow and see how and when different instructions affect the system.

Exercise 3: Stepping through Instructions

1. Load a Program: For this exercise, you could use a simple C++ program.

2. Stepinto (F7): This will execute one instruction. If the instruction is a function call, OllyDbg will
follow into the function.

3. Step over (F8): This also executes one instruction, but if it's a function call, the entire function
is executed as one step.

241

ThinkCyber | NX Malware Analysis

4.

Use Breakpoints (F2): Set breakpoints on lines of interest. OllyDbg will pause execution when
it hits these breakpoints, allowing you to inspect the program's state at these points.

Examining Registers and Memory
OllyDbg provides a real-time view of the CPU's registers and the program's memory, enabling you to
observe how different instructions affect their state.

Exercise 4: Examining Registers and Memory

1.

Load a Program: Use the same program as the previous exercise.
Run and Pause: Start execution with F9, then pause it with F12.

Examine Registers: Look at the Registers sub-window in the CPU window. Observe how the
registers change as you step through instructions.

Examine Memory: Use the Dump sub-window to examine memory. Right-click and select
'Follow in Dump' to view the contents of a memory address.

Edit Values: Try modifying register and memory values. Right-click on a value and select 'Edit'
to change it.

242

ThinkCyber | NX Malware Analysis

Anti-Debugging and Anti-Analysis Techniques

Malware may use a variety of anti-debugging techniques, such as detecting the presence of a
debugger, creating time delays, and using exception handlers. Let's explore how to recognize and
bypass these techniques.

Exercise 1: Bypassing Debugger Detection

Malware often uses the Windows API function IsDebuggerPresent(). This function checks the PEB
(Process Environment Block) and returns a non-zero value if a debugger is present. To bypass this:

1. Set a breakpoint on IsDebuggerPresent.
2. When the breakpoint is hit, note the return address and let the program continue.

3. The return address is where the return value of IsDebuggerPresent is checked. Set a
breakpoint on this address.

4. When this breakpoint is hit, change the ZF (Zero Flag) in the EFLAGS register to bypass the
debugger check.

Handling Obfuscated and Packed Malware Samples

Obfuscation and packing are common techniques used by malware authors to make their code more
difficult to analyze. Packed malware uses a wrapper program (the packer) that unpacks the actual
malware into memory at runtime.

3k OllyDbg - FILE.exe - [CPU - main thread, module FILE] - O X
ﬂ File View Debug Plugins Options Window Help - 8 %
T - =T e
Bl x| win] wil ¥] 4 L[E[MT|WH|[Cc|/|E|B|R|.|S] E[H]?]
T &0 FUZHAD :
Ba4pcall| . BE BOSA4@EE | MO ESI,FILE.AB485008 & EE&‘;;S;EQQEPU]
Go¢pselc| o GDBE DRCHFFFF|LER EDI,DUDRD FTR DS:[ESI+FFFFCo06] EfG BBI=418 FILE. <Modu leEntruPoint>
Ga4e5410| .vEB BB JHF SHORT FILE.B@48542R 3o H] P e e iGs
R T HOF ESF BO19FF34
Bo4pEazD| > 8ABG HOU AL, BYTE FTR DS:(ESI] S PR
. ES] BE485410 FILE.<ModuleEntruPoint>
aa4as4zs| . gger HOU BYTE PTR DS:CEDI1.AL
A o 52 i e EDI 9425410 FILE.<loduleEntruPoint>
madabeze| > piog. RO EBRiERR EIF @348541@ FILE.<ModuleEntruPoints
gadasazn| > BBLE {OU EBX, OWORD PTR DS:LESI] 59 B HEs e dadaeAa
| o GHas e A @ 55 6826 32bit @(FFFFFFFE]
: Z 1 DS GBZB 2hit @(FFFFFFFF)
e Ss Bl S
]| g EE i Bl |l g B8 ou8 SEbic BlRRRRRRRR)
a0ansacy = Lz SHORT ETLE ARSASEd 08 LastErr ERROR_MO_TOKEN (B@88G3FE)
EFL BEGEA246 (HO,ME,E,EE, NS, PE, GE, LE]
STE empty H.@
T4 + I]
Add H TEEDEECA| FETURN to FERNELSZ. PEoo@end
Saraanals S |BE1SFFLS| poIEEOOE ~
e aae| B | eaiSFFac| PES35536| KERNELSZ. BaseThreadIn it Thunk
b
88486818 B ~ HA1GEE S, Eid0d EETLIET + otdll Eid0d ~
Analysing FILE: 0 hewigtical procedures | Paugzed

The PUSHAD instruction is a part of the x86 instruction set and stands for "Push All Registers". It is
used to push the entire state of all general-purpose registers onto the stack in a specific order: EAX,
ECX, EDX, EBX, original ESP, EBP, ESI, and EDI.

In packed executables, it's quite common to see a PUSHAD instruction at the beginning of the

unpacking routine. The purpose is to preserve the state of all the general-purpose registers before the
unpacking process starts. This is done because the unpacking code might change the values of these

243

ThinkCyber | NX Malware Analysis

registers, and it's necessary to restore their original values after the unpacking is completed, to ensure
the correct execution of the original code.

After the unpacking routine has finished, you would typically see a corresponding POPAD command
which pops the state of all general-purpose registers off the stack, restoring them to their state before
the PUSHAD was executed. This ensures that the execution environment for the unpacked code is set
up correctly.

This pair of PUSHAD/POPAD instructions essentially provides a way for the unpacking routine to save
and restore the processor's state, allowing it to use the registers for its own purposes without affecting
the execution of the original code.

Exercise 2: Detecting Packed Malware

One way to detect packed malware is by looking for a high entropy in the executable's sections, which
suggests that the data has been encrypted or compressed.

1. Open the malware sample in OllyDbg.
2. Inthe CPU window, go to View > Executable modules to see a list of the executable's sections.

3. Sections with high entropy (often .text or .data) may suggest packing.

In OllyDbg and similar debuggers, "Find OEP by Section Hop (Trace Over)" is a function provided by the
OllyDump plugin. OEP stands for "Original Entry Point," which is the point in the program's execution
where control is handed off to the original, unpacked code. When a program is packed or obfuscated,
the OEP is typically hidden, and part of the process of unpacking is finding the OEP.

"Find OEP by Section Hop (Trace Over)" is a specific technique for finding the OEP. It works by tracing
the program's execution until it jumps (or "hops") to a different section of memory, which is often
where the unpacked code is located. The "Trace Over" part means that it steps over subroutine calls,
as opposed to stepping into them, which makes the tracing process faster and more focused on finding
section transitions.

On the other hand, "Trace Into" is a different debugging command that steps into subroutine calls. If
the execution encounters a call to a subroutine, "Trace Into" will follow that call and continue tracing
the execution inside the called subroutine. This provides a more in-depth view of the program's
execution, but it can be slower and more detailed than "Trace Over".

So, the key difference between the two is the level of depth at which they trace the program's
execution. "Trace Over" skips over the details of subroutines, which can be quicker and more efficient
for certain tasks like finding the OEP, while "Trace Into" provides a detailed view of all executed
instructions, which can be useful for a more thorough analysis of the program's behavior.

244

ThinkCyber | NX Malware Analysis

Unpacking and Deobfuscating Malicious Code
Unpacking malware involves tricking the malware into unpacking itself and then dumping the
unpacked code from memory.

Exercise 3: Manual Unpacking

This is a basic unpacking method that works with simple packers:

1.
2.
3.

Open the packed malware in OllyDbg.

Run the malware. The first breakpoint should be at the packer's OEP (Original Entry Point).
Step through the instructions until you reach a JMP instruction that jumps into a different
section. This is typically the unpacking routine.

Set a breakpoint on this JMP and run the malware.

When the breakpoint is hit, step into the JMP. The unpacked malware should now be in
memory.

245

ThinkCyber | NX Malware Analysis

Reverse Engineering and Code Analysis

Disassembling is the process of converting binary code into assembly code, which is a little more
human-readable. In the context of malware analysis, disassembling allows us to examine the
malware's code.

Exercise 1: Disassembling a Malware Sample
1. Load the malware sample into OllyDbg.
2. The main CPU window displays the disassembled code. This is the code you'll be analyzing.
Identifying Malware Functionalities and Algorithms
The functionalities and algorithms used by malware can tell us a lot about its purpose and behavior.
Exercise 2: Identifying Malware Functionalities
1. Look for suspicious API calls in the disassembled code. For example, file operation calls
(CreateFile, ReadFile, WriteFile, etc.) might suggest file manipulation, and networking calls
(socket, connect, send, recy, etc.) might suggest network communication.

2. Set breakpoints on these calls and run the malware. When a breakpoint is hit, inspect the
parameters to get more information about what the malware is doing.

Reconstructing High-Level Code from Assembly
With enough experience and knowledge, it's possible to reconstruct high-level code from assembly
code. This isn't an exact science, but it can help make the code easier to understand.
Exercise 3: Reconstructing High-Level Code
1. Pick a small section of the disassembled code, like a loop or a function.

2. Try to translate each assembly instruction into a high-level language, like C.
3. \Verify your translation by comparing the behavior of the high-level code to the assembly code.

Understanding Control Flow and Logic Structures

Control flow and logic structures (loops, conditionals, etc.) are fundamental to any program, and
malware is no exception.

Exercise 4: Understanding Control Flow

1. Choose a function in the disassembled code.

2. Identify the control flow structures in the function. IMP, JE, INE, JZ, JNZ, etc. instructions are
used for control flow.

3. Try to translate the control flow structures into a flowchart or high-level code to better
understand the logic of the function.

246

ThinkCyber | NX Malware Analysis

Identifying Encryption and Decryption Routines
Many malware samples encrypt their data or communications to hide their activities. Identifying and
understanding these routines can be crucial to analyzing the malware.

Exercise 5: Identifying Encryption Routines

1. Look for mathematical and bitwise operations in the disassembled code. These are often used
in encryption and decryption routines.

2. Set breakpoints on these operations and run the malware. When a breakpoint is hit, inspect
the parameters and results of the operation. This can give you clues about the encryption or
decryption routine.

247

ThinkCyber | NX Malware Analysis

Malware Debugging Tricks and Tips
Efficient debugging often involves more than just stepping through the code. It requires understanding
the flow of the program, recognizing patterns, and using all the tools at your disposal.

Exercise 1: Conditional Breakpoints

OllyDbg supports conditional breakpoints, which only break when a certain condition is met. This can
be helpful when dealing with loops or recurring functions.

Find a recurring function call or loop in your malware sample.

Set a breakpoint as you normally would.

Right-click the breakpoint and choose ‘Edit’. Here you can set your condition.
Test your conditional breakpoint by running the malware sample.

PwnNPE

Memory Analysis and Heap Exploitation
Memory analysis involves examining the state of memory at runtime. Heap exploitation involves
manipulating the heap to control program execution.

Exercise 2: Memory Analysis

1. Load a malware sample into OllyDbg.
2. Run the malware and then pause it.
3. Use the Dump window to examine the state of memory.

EF”E View Debug Plugins Options Window Help

(Sex| w]u] wiv s A = LlE[m/TwE]c]/[x[B[R]-]s] EF?]
00401000|00 OO0 0O 0 00 00 000] a 00 00 0 oo o0

oo|oo 0/ 00 00 or oooooo|.. "

0
(00 00 00 00 00 OO0 00 00 00 00 00 00|00 00 00 00f................
0|00 00 00 00|00 00 00 0000 00 00 00|00 00 00 00f.....o..o..oo...
30|00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00f......
10|00 00 00 00|00 00 00 00|00 00 00 0000 00 00 00| ...
oo oo 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00| ...o.ooooaoo..
1|00 00 00 00 00 OO0 00 00 00 00 00 00|00 00 00 00f......
1(00 00 00 00 00 00 00 00 00 00 00 0000 00 00 00f................
120|00 00 00 00 00 00 OO0 00 00 00 00 00|00 00 00 00f...
50|00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00|
00 00 00 00|00 00 00 00|00 00 00 00 00 00 00 00| e eneennnnnn.
1|00 00 00 00 00 OO0 OO0 00 00 00 00 00|00 00 00 00f...

004010C0 |00 00 OO0 00|00 00 OO OO |00 OO OO0 0000 OO0 OO0 O0)
0040100000 00 OO 00|00 Q0 00 00|00 OO Q0 00|00 00 00 OO) ..o aaoaaa.

| Frogram entry point | | Fauzed

The "Dump" operation in OllyDbg shows the raw byte data for a specific section of memory. When you
right-click on the ".text" section (which usually contains the executable code for a program) and select
"Dump", OllyDbg will display a window with a hex dump of that section of memory.

The "Dump" window displays the data in several columns:

1. Address: This is the memory location where the data resides.

Hexadecimal data: The raw data at that location, displayed as bytes in hexadecimal format.

3. ASCII Representation: This is a representation of the data as ASCII characters. Non-printable
characters are usually displayed as a period (.).

N

248

ThinkCyber | NX Malware Analysis

By inspecting the dumped memory, you can gain insights about the structure and content of the
program at a low level. This can be particularly useful in reverse engineering, for example, to
understand what an unknown or suspicious program is doing.

Uncovering Hidden Features and Functionalities
Malware often includes hidden features or functionalities intended to evade detection or to only
trigger under certain conditions.

Exercise 3: Uncovering Hidden Functionality
Examine the disassembled code for any unusual or suspicious patterns.

1.
2. Look for any conditional statements that could be hiding functionality.
3. Modify the flags or registers to change the outcome of these conditions.

249

ThinkCyber | NX Malware Analysis

OllyDbg Extensions and Plugins
There is a wide variety of OllyDbg plugins available, each serving different purposes. Here are a few
notable ones:

1. OllyDump: This plugin is used to dump process memory, useful for unpacking packed
executables.

Olly Advanced: A plugin that helps counter anti-debugging and anti-disassembly techniques.
PhantOm: Another plugin that is designed to defeat many common anti-debugging methods.
StrongOD: A powerful plugin that provides a variety of anti-anti-debugging measures.
OllyScript: This plugin provides a scripting interface to automate tasks in OllyDbg.

OllyBone: OllyBone is a plugin that connects OllyDbg with the Immunity CANVAS exploitation
framework.

ok wnN

Exercise: Using OllyDump to Unpack a Packed Executable
Let's use OllyDump, a popular plugin used for unpacking packed malware samples:

Download and install OllyDump if you haven't done so already.

Load a packed malware sample into OllyDbg.

Unpack the malware manually until you've reached the Original Entry Point (OEP).

Go to Plugins > OllyDump > Dump debugged process. Choose a location for the dumped file.
Open the dumped file in OllyDbg to analyze the unpacked malware.

ukwnN e

When you're trying to unpack an executable, your goal is generally to find the original, unpacked code.
This is often hidden inside a layer (or layers) of obfuscation to make analysis more difficult. This
obfuscation is usually created by a packer, which compresses, encrypts, or otherwise transforms the
original code.

One characteristic of packed executables is that they often contain sections of code that appear as
long strings of 00s (null bytes) in a disassembler or debugger. This is because the original code has
been transformed into a form that doesn't resemble typical executable code.

The unpacking routine, which is a part of the executable, is responsible for transforming this
obfuscated code back into its original form at runtime. This routine is essentially a piece of code that
prepares and executes the packed data.

One common approach to unpacking is to run the executable in a debugger until you reach the point
where the unpacking routine has just finished and is about to transfer control to the original code. This
is often represented by a jump instruction (JMP), and it's typically right before you start seeing the 00s.
By setting a breakpoint at this jump and then dumping the process memory, you can often capture the
unpacked code.

Why is it typically right before the 00s? Because the jump instruction is jumping into the code that was
previously obfuscated. The 00s represent the obfuscated or packed code that will be transformed by
the unpacker. Once the jump to the original, now-unpacked code is made, you know that the code has
been prepared for execution and it's time to dump it.

250

ThinkCyber | NX Malware Analysis

Keyboard Shortcuts in OllyDbg

OllyDbg, like any other tool, can be used much more efficiently if you master its keyboard shortcuts.
The following shortcuts are frequently used by malware analysts to debug and dissect malware
binaries:

F2: Set/Remove a breakpoint. This is useful for pausing execution at specific instructions.

F7: Step Into. This is used to step into a subroutine if the next instruction is a subroutine call.
F8: Step Over. This steps over a subroutine call, useful if you don't want to step into
subroutines.

F9: Run. This resumes program execution until the next breakpoint or the end of the program.
F4: Run to Cursor. This resumes execution until it reaches the line of code where your cursor
is currently located.

F12: Execute till return. Executes until the current function returns.

Ctrl+F2: Restart. This stops execution and reloads the binary, useful for starting over.

Ctrl+G: Go to Address. This is used to quickly navigate to a specific address in the code.
Ctrl+L: Go to the previous location in code navigation.

Ctrl+N: Open Names window. Shows a list of recognized symbols in the debugged program.
Alt+M: Opens Memory Map. This shows a list of memory sections.

Alt+C: Opens CPU window. This shows the current state of the CPU, including registers.
Alt+E: Opens Handles window. Shows the handles currently opened by the debugged process.
Ctrl+P: Pauses the execution. Useful for checking the current state in-between breakpoints.

251

ThinkCyber | NX Malware Analysis

Script-based Malware Analysis

Script-based malware analysis refers to the process of analyzing and understanding malicious software
(malware) using various scripting languages and tools. It involves writing scripts or utilizing existing
ones to automate tasks and extract valuable information from malware samples. This analysis
technique is commonly employed by security researchers, analysts, and incident response teams to
gain insights into malware behavior, identify its capabilities, and develop effective countermeasures.

Here are the key steps involved in script-based malware analysis:

1. Obtaining malware samples: Malware samples can be obtained from various sources, such as
honeypots, malware repositories, or captured during security incidents. These samples serve
as the basis for analysis.

2. Setting up a controlled environment: To prevent any unintended consequences, malware
analysis should be performed in a controlled and isolated environment. This usually involves
using virtual machines, sandboxes, or dedicated hardware.

3. Scripting language selection: Different scripting languages can be used for malware analysis,
including Python, PowerShell, JavaScript, or Bash. The choice depends on the analyst's
preferences, the target platform, and the specific analysis requirements.

4. Static analysis: Static analysis involves examining the malware without executing it. Scripts can
be written to extract valuable information from the binary or source code, such as strings,
function calls, and API references. This helps in identifying indicators of compromise (IOCs)
and understanding the malware's structure.

5. Dynamic analysis: Dynamic analysis involves running the malware in a controlled environment
and observing its behavior. Scripts can automate the execution and monitoring process,
capturing system calls, network traffic,c and other relevant activities. This helps in
understanding the malware's capabilities, such as file manipulation, network communication,
or persistence mechanisms.

6. Data extraction and reporting: Scripts can be used to extract relevant data from the analysis
process, such as extracted files, network captures, or behavioral logs. This data can then be
analyzed further, and a comprehensive report can be generated summarizing the findings and
providing actionable insights.

7. Post-analysis actions: After analyzing the malware, additional actions may be taken, such as
developing detection signatures, updating antivirus software, or sharing information with
relevant security communities to improve overall cyber defenses.

Script-based malware analysis offers several advantages. It allows for automation of repetitive tasks,
enables scalability in handling large volumes of malware samples, and facilitates collaboration among
analysts through script sharing. Additionally, scripting languages often provide access to powerful
libraries and tools that can aid in analyzing and understanding the malware more effectively.

However, it's important to note that malware analysis is a complex field, and script-based analysis is

just one approach among many. It's essential to stay updated with the latest malware trends,
techniques, and evasion mechanisms to ensure accurate analysis and effective mitigation strategies.

252

ThinkCyber | NX Malware Analysis

Malicious Document Analysis

Analyzing Malicious Microsoft Office and PDF Documents
Malicious documents are a common vector for delivering malware.

Understanding Malicious Documents

Malicious documents often appear normal but contain embedded scripts or exploits. They are typically
delivered via phishing emails and execute their payload when the document is opened.

Exercise: Research real-world examples of phishing emails that have delivered malicious documents.
What indicators of phishing can you identify?

Malicious Microsoft Office Documents

Microsoft Office documents can contain macros—scripts written in VBA (Visual Basic for
Applications)—which are often used to deliver malware.

Exercise: Create a benign Word document and write a simple macro, such as one that changes the
formatting of selected text.

Malicious PDF Documents

PDFs can contain JavaScript or exploits for known PDF reader vulnerabilities. These scripts or exploits
can be used to download and execute malware when the PDF is opened.

Exercise: Find a PDF that contains interactive elements like forms or buttons. These features often use
JavaScript.

Tools for Analyzing Malicious Documents
Several tools can help you analyze malicious documents:

= Didier Stevens' oledump.py: A tool for analyzing Microsoft Office documents.

= Peepdf: A Python tool for exploring the structure of a PDF file and examining suspicious
elements.

= VirusTotal: A website where you can upload suspicious files to be scanned by several antivirus
engines.

Exercise: Try using the tools above with benign documents to familiarize yourself with their
functionality.

Analyzing Malicious Documents
The process for analyzing a potentially malicious document generally involves:
1. Initial Analysis: Use an antivirus scanner or a service like VirusTotal to check for known threats.
2. Static Analysis: Examine the document structure and contents without opening it in its
associated application.

3. Dynamic Analysis: Open the document in a controlled environment to observe its behavior.

Exercise: Perform an initial analysis, static analysis, and dynamic analysis on a benign document.

253

ThinkCyber | NX Malware Analysis

Mitigation and Defense

Protection against malicious documents involves user education (e.g., not opening attachments from
unknown senders), keeping software up to date, and using security controls to block known threats
and detect unusual behavior.

Exercise: List several security controls that could protect against malicious documents.

Extracting and Analyzing Embedded Scripts and Macros
Malicious documents often hide their payloads in embedded scripts or macros.

Recognizing Potential Threats
Before extracting and analyzing embedded elements, it's important to identify suspicious documents.
Indicators might include unusual file sizes, unexpected documents from unknown senders, or warnings

about embedded scripts or macros when opening a document.

Exercise: Find a few examples of phishing emails online. Note any common phrases or tactics that
might suggest the presence of a malicious document.

Extracting Macros and Scripts from Microsoft Office Documents

Microsoft Office documents can contain VBA (Visual Basic for Applications) macros, which can be
viewed and extracted using the built-in Microsoft VBA editor or tools like oledump.py.

Exercise: Create a simple Word document with a benign macro. Use oledump.py to extract the macro
and compare it to the original.

Extracting Scripts from PDF Documents

JavaScript code can be embedded in PDFs, usually for interactive elements like forms but sometimes
for malicious purposes. Tools like Peepdf and PDFiD can help extract embedded JavaScript.

Exercise: Find a PDF with interactive elements online. Use Peepdf to inspect the PDF structure and
identify any JavaScript.

Analyzing Extracted Scripts and Macros

After extraction, scripts and macros can be analyzed using standard script analysis techniques, such as
static and dynamic analysis. This can help identify the script's purpose, potential I0Cs, and any
malicious activities.

Exercise: Take a benign script from a document and try to understand its functionality. Use online
resources to research any commands or functions you're not familiar with.

Deobfuscation

Malicious scripts or macros are often obfuscated to evade detection and analysis. Deobfuscation might
involve decoding Base64 strings, removing unnecessary characters, or even stepping through code in
a debugger to understand its logic.

254

ThinkCyber | NX Malware Analysis

Mitigating Document-Based Attacks and Exploits

Document-based attacks are a popular method of distributing malware due to their seeming
innocuousness and widespread use in professional settings.

Identifying Document-Based Threats

Recognizing potential threats is the first step towards mitigation. Indicators of a malicious document
can include unsolicited emails, documents from unknown senders, warnings about embedded scripts

or macros, or unexpected behavior.

Exercise: Research real-world examples of phishing emails that have delivered malicious documents.
Identify common indicators of malicious documents.

Disabling Macros and Scripts
One simple and effective mitigation strategy is disabling macros and scripts by default in applications
such as Microsoft Office and Adobe Reader. This prevents malicious code from running when a

document is opened.

Exercise: Check your settings in Microsoft Word and Adobe Reader. Make sure macros and scripts are
disabled by default.

User Education
Educating users about the risks of opening unexpected or unsolicited documents, the dangers of
enabling macros or scripts, and the signs of a phishing email can help reduce the risk of a successful

attack.

Exercise: Draft an email or create a brief presentation about the risks of document-based attacks and
how to avoid them.

Regular Updates and Patching

Keeping software up to date is crucial, as updates often contain patches for known vulnerabilities that
could be exploited by malicious documents.

Exercise: Ensure that your operating system, Microsoft Office, Adobe Reader, and other key software
are up to date.

Antivirus Software and Intrusion Detection Systems

Using antivirus software can help detect known threats, while intrusion detection systems (IDS) can
identify unusual behavior that might indicate an attack.

Exercise: If you have antivirus software installed, perform a scan on your system. Review the results
and take note of any suspicious findings.

255

ThinkCyber | NX Malware Analysis

Advanced Script Analysis Techniques

Identifying and Analyzing Script-Based Exploits and Shellcode

Script-based exploits are malicious code snippets that take advantage of vulnerabilities in software,
systems, or networks. They can be delivered through various means, such as email attachments,
malicious websites, or embedded in seemingly harmless files.

Common Types of Script-Based Exploits
Some common types of script-based exploits include:

= Buffer overflows

= SQL injections

= Cross-site scripting (XSS)

= Remote code execution
Identifying Script-Based Exploits
To identify script-based exploits, security professionals must first be familiar with common exploit
signatures and patterns. This section provides an overview of some techniques for identifying script-
based exploits.

Static Analysis

Static analysis involves examining the script's source code without executing it. This can help identify
potential vulnerabilities, such as hard-coded credentials, insecure functions, or suspicious patterns.

Dynamic Analysis

Dynamic analysis involves executing the script in a controlled environment to observe its behavior. This
can help identify potentially malicious activities, such as unauthorized access or unexpected network
connections.

Shellcode Analysis

Shellcode is a sequence of machine code instructions that, when executed, perform specific tasks,
often related to compromising a system or gaining unauthorized access. Analyzing shellcode is an
essential skill for security professionals.

Disassembly

Disassembling shellcode involves converting the machine code back into a human-readable format,
such as assembly language. Disassembly tools, such as IDA Pro, Ghidra, or Radare2, can be used for
this purpose.

Debugging

Debugging shellcode involves stepping through the code in a debugger, such as GDB or OllyDbg, to
observe its behavior and identify its purpose.

256

ThinkCyber | NX Malware Analysis

Emulation

Emulation involves executing the shellcode in a simulated environment, such as QEMU or Unicorn, to
study its behavior without risking compromise of a real system.

Hands-on Exercises
Now that you have learned about script-based exploits and shellcode analysis, try these hands-on
exercises to reinforce your understanding and improve your skills.

Exercise: Identifying Script-Based Exploits

1. Download a sample of potentially malicious scripts
2. Perform static and dynamic analysis on each script to identify potential exploits
3. Document your findings and provide recommendations for mitigation

Exercise: Shellcode Disassembly

1. Download a sample of shellcode

2. Useadisassembler, such as IDA Pro, Ghidra, or Radare2, to convert the shellcode into assembly
language

3. Analyze the disassembled code to determine its functionality

Exercise: Debugging Shellcode

1. Download a sample of shellcode
2. Load the shellcode into a debugger, such as GDB or OllyDbg
3. Step through the code to observe its behavior and identify its purpose

Exercise: Shellcode Emulation

1. Download a sample of shellcode
2. Execute the shellcode in an emulator, such as QEMU or Unicorn
3. Analyze the emulated shellcode's behavior to determine its functionality and potential impact

Exercise: Creating a Shellcode Signature

1. Based on your analysis of the shellcode samples in Exercises 8.4.2, 8.4.3, and 8.4.4, identify
common patterns or signatures

2. Create a custom signature for an Intrusion Detection System (IDS) or antivirus software to
detect the analyzed shellcode

3. Test the effectiveness of your signature using a test environment with IDS or antivirus software

Automation of Script-Based Malware Analysis

As the volume and complexity of malware continue to increase, automation has become essential for
efficient and effective malware analysis. We will explore various techniques and tools for automating
the analysis of script-based malware and provide hands-on examples and exercises to help you develop
a deep understanding of these important skills.

257

ThinkCyber | NX Malware Analysis

Benefits of Automation in Malware Analysis
Automating malware analysis offers several benefits, including:

= Faster analysis: Automation can analyze a large number of samples in a short amount of time.
= Consistency: Automated analysis ensures consistent results across different samples.

= Scalability: Automated analysis can easily scale to handle large volumes of malware samples.
= Reducing human error: Automation minimizes the risk of human error in the analysis process.

Techniques for Automating Malware Analysis
The following are common techniques used for automating script-based malware analysis:

Static Analysis

Static analysis involves examining the script's source code without executing it. Automated static
analysis can identify potential vulnerabilities, such as hard-coded credentials, insecure functions, or
suspicious patterns.

Dynamic Analysis

Dynamic analysis involves executing the script in a controlled environment to observe its behavior.
Automated dynamic analysis can detect potentially malicious activities, such as unauthorized access
or unexpected network connections.

Behavioral Analysis

Behavioral analysis focuses on the actions taken by a script during execution, such as file system
changes or network connections. Automated behavioral analysis can help identify malicious behavior
patterns.

Tools for Automating Malware Analysis
There are several tools available for automating script-based malware analysis. Some popular tools
include:

= Cuckoo Sandbox: An open-source automated malware analysis system that can analyze
various types of malware, including script-based malware.

= YARA: A pattern-matching tool used to create custom signatures for detecting malware.

= Volatility: An advanced memory forensics framework used for analyzing memory dumps from
infected systems.

= Hybrid Analysis: A cloud-based malware analysis platform that supports automated static and
dynamic analysis.

Hands-on Exercises
Now that you have learned about automation in script-based malware analysis, try these hands-on
exercises to reinforce your understanding and improve your skills.

Exercise: Automated Static Analysis
1. Download a sample of potentially malicious scripts from [URL]
2. Use an automated static analysis tool, such as YARA, to analyze the scripts for potential

vulnerabilities
3. Document your findings and provide recommendations for mitigation

258

ThinkCyber | NX Malware Analysis

Exercise: Automated Dynamic Analysis

1. Download a sample of potentially malicious scripts from [URL]
Set up a controlled environment, such as Cuckoo Sandbox, for automated dynamic analysis
3. Analyze the scripts using the automated dynamic analysis tool and document the observed

behavior

~

Exercise: Automated Behavioral Analysis

1. Download a sample of potentially malicious scripts from [URL]
2. Use a behavioral analysis tool, such as Volatility, to analyze the scripts' actions during execution
3. Document your findings and provide recommendations for mitigation

Exercise: Creating Custom YARA Rules

1. Based on your analysis in Exercises 1, 2, and 3, identify common patterns or signatures among

the malware samples

2. Create custom YARA rules to detect the analyzed malware samples

3. Test the effectiveness of your custom YARA rules using a test environment with an Intrusion
Detection System (IDS) or antivirus software

259

